首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Integral parameters of zooplankton community, including species diversity and its components were compared between the Chukchi Sea, Bering Sea, Sea of Okhotsk, Sea of Japan, and adjacent Pacific waters based on the data obtained by standard Juday net with a mouth area of 0.1 m2 during the large-scale surveys conducted by the Pacific Fisheries Research Center (TINRO Center) in 1984–2013. These parameters were calculated for the total surveyed area of approximately 7.0 million km2 and separately for each of the considered water bodies. In Pacific waters, species richness is higher than that in all the seas, while the concentration of individuals (expressed in terms of abundance, ind./m3) and evenness of their distribution over species were lower. The only sea with a larger mean size of organisms compared to the ocean is the Bering Sea. A lower species diversity than in the ocean has been recorded only from the Chukchi Sea; a lower density (in terms of biomass, g/m3) was determined only from the Sea of Japan. Among the four seas, the Chukchi Sea ranks first in terms of biomass and abundance of zooplankton, second in species evenness, third in the mean size of individuals, and last in species richness and diversity. The Bering Sea ranks first in terms of mean size of plankton organisms, second in species richness, diversity, and biomass, third in abundance, and last in species evenness. The Sea of Okhotsk ranks second in terms of mean size of individuals, last in their abundance, and third in the other parameters. The Sea of Japan ranks first in terms of species richness, evenness, and diversity, second in abundance, and last in mean size of zooplankton organisms, and, therefore, their biomass. The biomass of zooplankton, in accordance with the concentration of nutrients, increases in the southto-north direction (while its absolute abundance depends largely on the size of the body of water). The mean size of organisms increases in the same direction; the evenness of their distribution over species increases in the reverse direction (with the exception of both parameters for the Chukchi Sea). The rank of a water body for its biodiversity coincides with the species richness rank. The latter increases from north to south (except for the Okhotsk Sea), but greatly depends on the surveyed area and, even more, on the surveyed volume of water. A study of the literature data found some unexpected statistically significant relationships of the integral parameters of zooplankton with those of pelagic and bottom macrofauna, as well as with the parameters of zooplankton production, on the size of the considered bodies of water. The causes and the biological meanings of most of these relationships still do not have any rational interpretation. Their testing at other spatial scales will be continued in future works.  相似文献   

2.
Jani Heino 《Hydrobiologia》2000,418(1):229-242
Littoral zones of small water bodies are spatially heterogeneous habitats, harbouring diverse biotic communities. Despite this apparent heterogeneity, many studies have stressed the importance of water chemistry in determining the structure of littoral macroinvertebrate assemblages. The purpose of this study was to consider the relative importance of several spatial and water chemistry variables in explaining the patterns in the structure of macroinvertebrate assemblages in 21 lentic water bodies in northeastern Finland. Water bodies were selected to represent various habitat conditions ranging from small permanent bog ponds to small forest lakes. According to canonical correspondence analysis (CCA), the most important environmental factors related to assemblage composition were water body area, moss cover, total nitrogen and water hardness. In general, species composition in small bog ponds tended to differ from that in larger lakes with forested shoreline. Total species richness was best explained by a composite variable (PCA) describing physical habitat heterogeneity, species richness being lowest in small bog lakes with simple bottom structure and low amount of aquatic plants. Species numbers in dominant functional feeding groups were related to different environmental factors. Shredder species richness was best explained by a regression model incorporating total nitrogen and the amount of organic matter, both of which were negatively related to the number of shredder species. The number of gatherer species increased with mean substratum particle size. Scraper species richness was negatively affected by the abundance of detritus and positively affected by depth, and a model including both variables explained most of the variation. Variation in the number of predatory species was best explained by a regression model including moss cover and lake area.  相似文献   

3.
The results of studies on the production-destruction processes in the water of overgrowths and periphyton of higher aquatic plants in the Volzhskii Reach of the Rybinsk Reservoir are presented. The studied aspects included the level of quantitative development and the activity of bacterioplankton of various ecological groups of macrophytes. It was revealed that the processes of destruction of organic matter under the impact of bacteria in the macrophyte periphyton prevail over the rate of primary production in algal periphyton. The production of periphyton and planktic bacteria per 1 m2 of macrophyte overgrowth is calculated.  相似文献   

4.
Invasion of non-native species is considered a major threat to global biodiversity. Here we present a comprehensive overview of the occurrence, richness and biomass contribution of non-native fish species in 1943 standing water bodies from 14 countries of the Western Palearctic, based on standardised fish catches by multi-mesh gillnetting. We expected strong geographical gradients to emerge in the occurrence of non-natives. We further hypothesised that the contribution by non-natives to the local fish community biomass was correlated with local richness and the trophic level of native and non-native species. Non-native fish species occurred in 304 of 1943 water bodies (16%). If the average number of occupied water bodies per country was weighted by number of water bodies per country, the grand mean occurrence of non-natives in Western Palearctic water bodies was 10%. Exotic (non-native to the Palearctic) and translocated (non-native only to parts of the Palearctic) species were found in 164 (8.4%) or 235 (12.1%) of the water bodies, respectively. The occurrence and local richness of non-native fish species increased with temperature, precipitation and lake area and were substantially higher in reservoirs than in natural lakes. High local biomass contributions of non-native species were strongly correlated with low richness of native species and high richness of non-native species, whereas the trophic level of the fish species had only a weak effect. Single non-native species rarely dominated community biomass, but high biomass contributions and thus strong community and ecosystem impacts can be expected if several non-native species accumulate in a water body.  相似文献   

5.
The structure of photosynthetic elements was investigated in leaves of 42 boreal plant species featuring different degrees of submergence (helophytes, neustophytes, and hydatophytes). The mesophyll structure types were identified for all these species. Chlorenchyma tissues and phototrophic cells were quantitatively described by such characteristics as the sizes of cells and chloroplasts in the mesophyll and epidermis, the abundance of cells and chloroplasts in these tissues, the total surface area of cells and chloroplasts per unit leaf area, the number of plastids per cell, etc. The hydrophytes typically had thick leaves (200–350 m) with a well-developed aerenchyma; their specific density per unit area (100–200 mg/dm2) was lower than in terrestrial plants. Mesophyll cells in aquatic plants occupied a larger volume (5–20 × 103m3) than epidermal cells (1–15 × 103m3). The number of mesophyll cells per unit leaf area was nearly 1.5 times higher than that of epidermal cells. Chloroplasts were present in the epidermis of almost all species, including emergent leaves, but the ratio of the chloroplast total number to the number of all plastids varied depending on the degree of leaf submergence. The total number of plastids per unit leaf area (2–6 × 106/cm2) and the surface of chloroplasts per unit leaf area (2–6 cm2/cm2) were lower in hydrophytes than in terrestrial plants from climatically similar habitats. The functional relations between mesophyll parameters were similar for hydrophytes and terrestrial plants (a positive correlation between the leaf weight per unit area, leaf thickness, and the number of mesophyll cells per unit leaf area), although no correlation was found in hydrophytes between the volume of mesophyll cells and the leaf thickness. Phototrophic tissues in aquatic plants contributed a larger fraction to the leaf weight than in terrestrial plants, because the mechanical tissues were less developed in hydrophytes. The CO2assimilation rates by leaves were lower in hydrophytes than in terrestrial plants, because the total surface area of chloroplasts per unit leaf area is comparatively small in hydrophytes, which reduces the conductivity for carbon dioxide diffusion towards the carboxylation sites.  相似文献   

6.
Active processes of permafrost thaw in Western Siberia increase the number of soil subsidencies, thermokarst lakes and thaw ponds. In continuous permafrost zones, this process promotes soil carbon mobilisation to water reservoirs, as well as organic matter (OM) biodegradation, which produces a permanent flux of carbon dioxide (CO2) to the atmosphere. At the same time, the biogeochemical evolution of aquatic ecosystems situated in the transition zone between continuous permafrost and permafrost-free terrain remains poorly known. In order to better understand the biogeochemical processes that occur in thaw ponds and lakes located in discontinuous permafrost zones, we studied ~30 small (1–100,000 m2) shallow (<1 m depth) lakes and ponds formed as a result of permafrost subsidence and thaw of the palsa bog located in the transition zone between the tundra and forest-tundra (central part of Western Siberia). There is a significant increase in dissolved CO2 and methane (CH4) concentration with decreasing water body surface area, with the largest supersaturation with respect to atmospheric CO2 and CH4 in small (<100 m2) permafrost depressions filled with thaw water. Dissolved organic carbon (DOC), conductivity, and metal concentrations also progressively increase from large lakes to thaw ponds and depressions. As such, small water bodies with surface areas of 1–100 m2 that are not accounted for in the existing lake and pond databases may significantly contribute to CO2 and CH4 fluxes to the atmosphere, as well as to the stocks of dissolved trace elements and organic carbon. In situ lake water incubation experiments yielded negligible primary productivity but significant oxygen consumption linked to the mineralisation rate of dissolved OM by heterotrophic bacterioplankton, which produce a net CO2 flux to the atmosphere of 5 ± 2.5 mol C m2 year?1. The most significant result of this study, which has long-term consequences on our prediction of aquatic ecosystem development in the course of permafrost degradation is CO2, CH4, and DOC concentrations increase with decreasing lake age and size. As a consequence, upon future permafrost thaw, the increase in the number of small water bodies, accompanied by the drainage of large thermokarst lakes to the hydrological network, will likely favour (i) the increase of DOC and colloidal metal stocks in surface aquatic systems, and (ii) the enhancement of CO2 and CH4 fluxes from the water surface to the atmosphere. According to a conservative estimation that considers that the total area occupied by water bodies in Western Siberia will not change, this increase in stocks and fluxes could be as high as a factor of ten.  相似文献   

7.
Chironomid midges technically named blood worms are known as useful live food for higher aquatic organism like fish. Present study deals with the seasonal variations of total body protein and the growth rates of chironomid larvae occurring in two water bodies of West Bengal, India. Analysis of the data revealed that the amount of body protein and the growth rate of larvae are higher during summer and monsoon. Comparative analysis of the data, indicates that the entire phenomenon depends on nutrient cycle of the water bodies which is influenced by a number of factors such as water temperature, alkalinity and soil organic carbon.  相似文献   

8.
Acuna  R.  Contreras  F.  Kerekes  J. 《Hydrobiologia》1994,(1):101-106
Six bodies of water in two coastal lagoon systems were investigated in Chiapas State, Mexico between July, 1990 and February, 1991. The size of water bodies ranged from 102.5 to 847.5 ha. Salinity varied seasonally being the lowest in July during the rainy season (1.0) and highest in February (35.8). The waters are hypertrophic with total phosphorus concentrations as high 900 mg m–3.The number of bird species was the highest in February (N = 9 to 23) and the lowest in July (N = 2 to 15). The majority of birds present are resident species of Mexico but several species of northern birds were present in February (e.g. Lesser Scoup, Osprey, Peregrin Falcon).The number of birds observed in the waterbodies varied during the study period being as high as 2800 Cormorants, 2300 White Pelicans and 681 Limpkins, at a particular time, or expressed in terms of units surface area of each lagoon 8.0, 2.7 and 1.9 individuals per hectare respectively. The daily food requirements of White Pelicans at such a high density is about 4.1 kg ha–1 d–1.The hypertrophic state of Cerritos Lagoon allows a sufficient level of production to support such a high food requirement. Considering the limited survey time spent on the lagoons the bird population numbers are probably underestimated.  相似文献   

9.
This paper investigates species richness and species occupancy frequency distributions (SOFD) as well as patterns of abundance–occupancy relationship (SAOR) in Odonata (dragonflies and damselflies) in a subtropical area. A total of 82 species and 1983 individuals were noted from 73 permanent and temporal water bodies (lakes and ponds) in the Pampa biome in southern Brazil. Odonate species occupancy ranged from 1 to 54. There were few widely distributed generalist species and several specialist species with a restricted distribution. About 70% of the species occurred in <10% of the water bodies, yielding a surprisingly high number of rare species, often making up the majority of the communities. No difference in species richness was found between temporal and permanent water bodies. Both temporal and permanent water bodies had odonate assemblages that fitted best with the unimodal satellite SOFD pattern. It seems that unimodal satellite SOFD pattern frequently occurred in the aquatic habitats. The SAOR pattern was positive and did not differ between permanent and temporal water bodies. Our results are consistent with a niche‐based model rather than a metapopulation dynamic model.  相似文献   

10.
Summary The number of quinacrine-fluorescent nerve cell bodies and the percentage of the ganglion area occupied by this fluorescence within stretch preparations of the myenteric plexus of the stomach and ileum of the guineapig, rabbit and rat were assessed. The number of quinacrine-positive cell bodies per cm2 of plexus varied between 1045 in the rabbit ileum to 2633 in the rat stomach, whilst the percentage of the ganglionic area occupied by fluorescence was approximately 10 %. The distribution of quinacrine-fluorescent nerve fibres and cell bodies in the myenteric plexus was compared to the distribution of nerves revealed by catecholamine fluorescence and by staining for acetylcholinesterase in the stomach and ileum of all three species. Quinacrine fluorescence appears to be selective for non-adrenergic, non-cholinergic nerves; the possibility that it binds to high levels of ATP is discussed.  相似文献   

11.
In arid regions, spring-fed habitats are frequently the only year-round source of surface water and are essential habitats for aquatic organisms and primary water sources for terrestrial animals and human settlements. While these habitats have been relatively well-studied in some regions, those of the southern Sonoran Desert have received little attention. In 2008 and 2009, we documented the biodiversity of aquatic animals at 19 sites across three arid mountain ranges in Sonora, Mexico, characterized macrohabitat types, examined seasonal variation in aquatic invertebrate communities, and explored the effects of an exotic fish (tilapia) on native communities. We documented >220 aquatic animal species, including several new species and range extensions for others. Macrohabitat type (oasis, tinaja, riffle, and seep) was more important than geographic location in structuring aquatic invertebrate communities at the scale of our study area (~9,000 km2). We found little evidence of predictable seasonal variation in invertebrate communities, despite dramatic hurricane-induced flooding. Aquatic vertebrates were not diverse across the study region (4 amphibian species and 2 species each of fishes and reptiles), but were often locally abundant. Presence of non-native tilapia at one site was associated with reduced abundances of native leopard frogs and reduced richness and density of native aquatic invertebrates. The most pressing aquatic habitat conservation concerns in the region, as in other deserts, are groundwater withdrawal, unmanaged recreational visitation, and the introduction of exotic species. Spring-fed habitats around the world have been called hotspots of freshwater biodiversity, and those of the Sonoran Desert are no exception.  相似文献   

12.
  1. Studying the geographical distribution of species can reveal conditions and processes that may drive species presence and abundance. Organism distribution has frequently been explained by climate, but the relative role of local environmental predictors is not fully understood. Moreover, in the freshwater realm, intrinsic differences existing between different categories of water bodies can lead to significant differences in species–environment relationships. Here, we tested the relative importance of broad-scale climate and local environmental predictors in explaining plant species distributions in freshwater lakes and streams.
  2. We built species distribution models to investigate which predictors best explain aquatic plant distribution in two categories of water bodies. We used species inventories and records of three climate and eight local environmental predictors for 150 lakes and 150 streams in Finland.
  3. We found that sets of predictors that explain the distribution of macrophyte species are unique depending on if species are in a lake or a stream. Overall, air temperature and ecosystem size were essential to predict aquatic plant species presence in both water body categories. Broad-scale climate predictors were always very important in explaining species distribution, while local environmental conditions such as water chemistry were of variable influence, depending on species and water body category.
  4. These results are probably due to high spatial and temporal variability and range of water physico-chemical parameters, especially in streams. Nonetheless, despite a lower relative importance than climatic factors, local environmental predictors also strongly affected species distributions.
  5. Our findings highlight that incorporating local environmental conditions to species distribution models in addition to climate predictors is necessary to improve predictions, particularly for distribution of stream flora. Considering the species-specific responses of aquatic plants to their environment, studying species individually with species distribution models represents a useful analysis.
  相似文献   

13.
SUMMARY

The structure and summer biomass (g m?2 dry mass) of the principal aquatic macrophyte communities of the Wilderness Lakes were measured. Both emergent and submerged communities were included in the study. Productivity estimates were made by multiplying biomass by production/biomass ratios for each species. Salinity gradients in the system are described and details of the different sediment types associated with the macrophytes are given. There was considerable variation in production rates between the different water bodies often coinciding with a salinity gradient. However, rapid, natural changes in the communities are described which also influence production rates in a given water body. Production rates (g dry mass m?2 a?1) were of the order: Typha latifolia > Phragmites australis > Scirpus littoralis > Potamogeton pectinatus > Chara qlobularis > Ruppia cirrhosa. The significance of the macrophyte rates is discussed in relation to Wilderness Lakes area as a whole.  相似文献   

14.
Primary production was measured every 2 weeks during 16 months (N = 33) in Tissawewa, a tropical shallow reservoir in the lowlands of south-east Sri Lanka. Results are interpreted in relation to selected environmental conditions such as oxygen concentrations, water temperature, Secchi-disc depth, wind force, conductivity, and morphoedaphic index and water level fluctuations. Because of regularly reoccurring high wind speeds the water column is well mixed. Daily gross primary production per unit area was plotted as a function of the algal biomass per unit area over the euphotic zone. Chlorophyll-a concentration in the euphotic zone was taken as measure for the algal biomass. The literature comparisons showed that the primary productivity in Tissawewa was in the same range as in 29 tropical lakes and reservoirs, of which 27 were from Africa. The productivity of these 30 tropical lakes and reservoirs was compared with: (a) 27 lakes of which 25 were temperate lakes, and (b) 49 North American temperate lakes. Firstly, comparisons were made on an annual basis for the tropical water bodies, but restricted to May–September, the growing season, for temperate water bodies. The gross primary productivity of tropical water bodies was ca. three times higher than that of temperate water bodies. These differences were even more dramatic if the two geographical regions are compared on an annual basis, i.e. the tropical systems are ca. six times more productive than their temperate counterpart.  相似文献   

15.
  • 1 To test predictions of the river habitat templet and the patch dynamics concept, trends in species traits and species richness of aquatic beetles were related to the spatial-temporal variability of eighteen habitat types in the alluvial floodplain of the French Upper Rhône River. One hundred and twenty species of beetles were used in this analysis.
  • 2 The basic information was obtained either from the literature (for most of the species traits) or from observations made at approximately 500 sampling sites in the Brégnier-Cordon and Jons sections over the past 19 years (for habitat utilization). This information was structured by a fuzzy coding technique and examined by ordination analyses.
  • 3 Analyses of the relationships among nineteen species traits revealed a clear distinction according to traits such as body form (for adults), functional feeding type and food (adults and larvae), attachment to the substrate and dissemination potential (adults and larvae), and patterns of aquatic and/or terrestrial life of adults and larvae. Species traits such as number of descendants per reproductive cycle, and number of reproductive cycles per year or per individual showed less contrast, because these traits are rather homogeneous in aquatic beetles.
  • 4 Analyses of the habitat utilization by the aquatic beetles revealed a vertical gradient that separates interstitial from superficial habitats, and a transverse gradient for the superficial habitats, which extends from the main channel towards permanent oxbow lakes and temporary waters.
  • 5 The significant relationship betweeen species traits and habitat utilization demonstrates that most beetle species use a particular set of habitat types with a particular set of species trait modalities.
  • 6 Species traits of aquatic beetles are homogeneous but evidently very successful and are adapted to many potential conditions of spatial–temporal variability. Because of this homogeneity, observations on aquatic beetles do not support trends of traits in the framework of spatial–temporal variability predicted from the river habitat templet.
  • 7 The observed species richness of aquatic beetles is low in habitat types with a low spatial–temporal variability, increases as spatial variability increases, and tends to be highest at intermediate temporal variability. This pattern matches predictions of the patch dynamics concept.
  相似文献   

16.
Regularities in species richness are widely observed but controversy continues over its mechanistic explanation. Because richness patterns are usually a compound measure derived from taxonomically diverse species with different ecological requirements, these analyses may confound diverse causes of species numbers. Here we investigate species richness in the aquatic beetle fauna of Europe, separating major taxonomic groups and two major ecological types, species occurring in standing and running water bodies. We collated species distributions for 800+ species of water beetles in 15 regions across western Europe. Species number in any of these regions was related to three variables: total area size, geographic connectedness of the area, and latitude. Pooled species numbers were accurately predicted, but correlations were different for species associated with either running or standing water. The former were mostly correlated with latitude, while the latter were only correlated with the measure of connectedness or with area size. These differences were generally also observed in each of the four phylogenetically independent lineages of aquatic Coleoptera when analysed separately. We propose that effects of habitat, in this case possibly mediated by different long term persistence of running and standing water bodies, impose constraints at the population or local level which, if effective over larger temporal and spatial scales, determine global patterns of species richness.  相似文献   

17.
This paper characterizes water body types harboring immature mosquitoes in a low-lying area of Haiti and investigates the relationship between immature Anopheles albimanus abundance and aquatic predator presence. Larval An. albimanus were found in permanent and semi-permanent groundwater habitats including (in order of greatest abundance) hoof/footprints, ditches, rice fields, and ground pools. High levels of species co-occurrence were observed in habitats. Among water bodies positive for immature Anopheles, 42.9% also contained immature Culex species. Significant association between An. albimanus abundance and the absence of fish predators was detected. Results from the multivariate negative binomial regression suggest that the interactive effect of increasing distance from the Artibonite River and elevation are positively associated with the abundance of immature An. albimanus. The presence of fish predators was not associated with the abundance of An. albimanus larvae in habitats while controlling for habitat distance and elevation. The results of this study provide baseline entomological information to inform vector control programs in the country.  相似文献   

18.
Padisák  Judit  Reynolds  Colin S. 《Hydrobiologia》1998,379(1-3):41-53
Seasonal and spatial patterns of aquatic primary production were compared in a tidal creek (Estero Pargo) bordered by mangroves and open waters of Terminos Lagoon, Mexico. Comparisions were made during a 17-month period in 1990–91 that spanned dry, rainy, and storm or 'Norte' seasons. Annual net primary productivity was 478 g C m-2 yr-1 in the lagoon and 285 g C m-2 yr-1 in the tidal creek. In some months, there were significant differences in primary production between the two sites. In both areas, the highest productivity occurred in summer at the start of the rainy season (June 1991), and the lowest production occurred during the dry season from February to May. Aquatic primary production was lower during the dry season of 1991 in comparison to 1990, possibly related to unusually low precipitation during 1991. Seasonal changes in water column productivity were correlated to variations in light and precipitation. The effect of runoff from mangrove forests was assessed by serial additions of surface water from a fringe forest to bottle incubations of lagoon water. Small additions of mangrove water stimulated primary production in lagoon waters during all seasons. The net productivity was extremely sensitive to aliquot volume; small amounts (0.3 and 1.7% of total volume) were stimulatory, increasing rates by > 50% in 7 of 12 experiments. The greatest effect occurred in September, 1990, when productivity tripled after an amendment with 1 ml (0.3% by volume) of mangrove water. Additions greater than 3% of total volume generally led to reduction in net productivity probably due to the inhibitory effect of humic substances. In many tropical systems, tidal exchange of estuarine waters with mangrove forests is likely to be important to enhancing water column productivity by exporting organic nutrients and other growth-enhancing substances to the estuary. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The seasonal succession of macrophyte communities on temporarily flooded wetlands in the Pantanal of Poconé was investigated by general surveys of the region and by semi-quantitative surveys conducted on an area of 2500 m2 with a gradient of water depth steep enough to permit a correlation of the species diversity with the depth and duration of flooding. The tropical wet-and-dry climate is the main determinant of the regional ecological conditions, and the seasonal variations of the physical and chemical factors, including the alternation between aquatic and terrestrial conditions over most of the area, produce a pronounced seasonal succession. During all of the seasons, the occurrence and growth of the plant species on the area surveyed was found to be inversely correlated with the water depth, but the statistical significance of the findings varied during the course of the year. The plant species are discussed individually, since little or nothing had previously been reported about the autecology of several of them. In addition, a general survey is made of the common aquatic and wetland plant species encountered in the region. On sites temporarily inundated during the course of the year, there is usually a succession of vegetation involving purely terrestrial and aquatic species as well as short-lived annuals that appear only during the transition period from wet to dry and perennials with seasonal periods of dormancy during periods of excessive dryness.  相似文献   

20.
The present study aims to determine biological fish production of a lagoon and relate this to the commercial fisheries yield. The fish community of an estuarine lagoon in the west coast of Portugal was sampled between November 1998 and November 2000 to estimate the production ecology of the community, including somatic production, population size, species richness, species diversity, and biomass. Using the Allen curve method of determination, the total annual fish production of all fish species in the lagoon was calculated at 90.3 tonnes or 2.1 g m−2 year−1 in the first year and 106.7 tonnes or 2.5 g m−2 year−1 in the second year. The marine seasonal migrant species, sardine, Sardina pilchardus, which colonises the lagoon during the juvenile period of its life stages, produced more than 35 tonnes in each year and accounted for >39 and >33%, in the first and second year respectively, of the total fish production in this lagoon. Sardine was numerically more abundant (18,217 specimens) but due to their small size contributed only 13% to the total biomass. Sardine was thus the most important fish species in terms of the consumption and production processes of the whole fish community in this system. Commercial fisheries’ records indicate that approximately 300 tonnes per annum of fish are taken from the lagoon, which corresponds to three times more than the estimated production in the lagoon. Thus, if it exists, the sustainability of the fishery appears to depend on the immigration of fish from the adjacent coastal area and it is questioned whether the fishery is sustainable in the long-term. The findings indicate that careful and effective management of the lagoon is required to ensure a long-term healthy aquatic environment and sustainable catches in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号