首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The question of whether Thiobacillus acidophilus maintains its cytoplasmic pH at values close to neutrality by active or passive means was explored by subjecting the organism to long-term starvation (up to 22 days). Starving cells maintained a delta pH of 2 to 3 U throughout starvation, although cellular poly-beta-hydroxybutyric acid and ATP, the proton motive force, and culture viability were low or not detectable after 200 h. Cells exposed to azide or azide plus N,N'-dicyclohexylcarbodiimide immediately exhibited characteristics of cells starved for more than 200 h. Thus, a large delta pH in T. acidophilus was maintained in the absence of ATP, ATPase activity, respiration, significant levels of proton motive force, and cell viability and was therefore not dependent on chemiosmotic ionic pumping. The transition from a metabolically active to an inactive state was accompanied by a large increase in the positive membrane potential, which nearly completely compensated for the delta pH in the inactive cells. The longevity of the acidophile during starvation was comparable to that reported previously for neutrophiles, and the loss of viability occurred not because of the acidification of the cytoplasm but apparently because of energy depletion.  相似文献   

2.
pH dependence of the Coxiella burnetii glutamate transport system.   总被引:8,自引:2,他引:8  
The transport of glutamate, apparently a primary energy source for Coxiella burnetii, has been examined. C. burnetii is shown to possess a pH-dependent active transport system for L-glutamate with an apparent Kt of 61.1 microM and Vmax of 8.33 pmol/s per mg at pH 3.5. Both L-glutamine and L-asparagine competitively inhibited transport of glutamate, but D-glutamate, L-aspartate, L-glutamate-gamma-methyl ester, methionine sulfoximine, or alpha-ketoglutarate did not compete. This transport system is both temperature and energy dependent. Uptake of glutamate is highly sensitive to uncouplers of oxidative phosphorylation such as 2,4-dinitrophenol and carbonyl cyanide-m-chlorophenyl hydrazone that decrease the proton motive force across the cytoplasmic membrane. ATPase inhibitors such as dicyclohexylcarbodiimide or metabolic poisons such as KCN, NaF, or arsenite were much less effective as inhibitors of glutamate transport. Uptake of glutamate did not appear to be coupled to Na+ symport as in Escherichia coli since no monovalent cation requirement could be demonstrated. Instead, the Vmax of glutamate transport showed good correlation with the transmembrane pH gradient (delta pH). From these results, we propose that L-glutamate transport by C. burnetii is energized via a proton motive force.  相似文献   

3.
4.
The role of K+ and Na+ in the maintenance of the proton motive force (delta p) was studied in Escherichia coli incubated in alkaline media. Cells respiring in Tris buffer (pH 7.8) that contained less than 100 microEq of K+ and Na+ per liter had a normal delta p of about -165 mV. At pH 8.2, however, the delta p was reduced significantly. The decrease in delta p at pH 8.2 was due to a marked decrease in the transmembrane potential (delta psi), while the internal pH remained at 7.5 to 7.7. When KCl or NaCl, but not LiCl or choline chloride, was added to the cells, the delta psi rose to the values seen at an external pH of 7.8. In addition, choline chloride inhibited the enhancement of delta psi by K+. None of the salts had a significant effect on the internal pH. The effects can be attributed to alterations of K+ or Na+ cycling in and out of the cells via the known K+ and Na+ transport systems.  相似文献   

5.
The utilization of cellulose or cellobiose by Bacteroides succinogenes S85 was severely inhibited at pH values of less than 5.7. Since low pH inhibited the utilization of both cellobiose and cellulose, changes in cellulase activity could not explain the effect. At an extracellular pH of 6.9, the pH gradient (delta pH) across the cell membrane was only 0.07 U. As extracellular pH declined from 6.9 to 5.7, intracellular pH decreased to a smaller extent than extracellular pH and delta pH increased. Below pH 5.7, there was a linear and nearly proportional decrease in intracellular pH. B. succinogenes took up the lipophilic cation tetraphenylphosphonium ion (TPP+) in the presence of cellobiose, and uptake was sensitive to the ionophore valinomycin. As pH was decreased with phosphoric acid, the cells lost TPP+ and electrical potential, delta psi, decreased. From extracellular pH 6.9 to 5.7, the decrease in delta psi was compensated for by an increase in delta pH, and the proton motive force ranged from 152 to 158 mV. At a pH of less than 5.7, there was a large decrease in proton motive force, and this decrease corresponded to the inhibition of cellobiose utilization.  相似文献   

6.
Oxygen taxis and proton motive force in Azospirillum brasilense.   总被引:3,自引:1,他引:2       下载免费PDF全文
The microaerophilic nitrogen-fixing bacterium Azospirillum brasilense formed a sharply defined band in a spatial gradient of oxygen. As a result of aerotaxis, the bacteria were attracted to a specific low concentration of oxygen (3 to 5 microM). Bacteria swimming away from the aerotactic band were repelled by the higher or lower concentration of oxygen that they encountered and returned to the band. This behavior was confirmed by using temporal gradients of oxygen. The cellular energy level in A. brasilense, monitored by measuring the proton motive force, was maximal at 3 to 5 microM oxygen. The proton motive force was lower at oxygen concentrations that were higher or lower than the preferred oxygen concentration. Bacteria swimming toward the aerotactic band would experience an increase in the proton motive force, and bacteria swimming away from the band would experience a decrease in the proton motive force. It is proposed that the change in the proton motive force is the signal that regulates positive and negative aerotaxis. The preferred oxygen concentration for aerotaxis was similar to the preferred oxygen concentration for nitrogen fixation. Aerotaxis is an important adaptive behavioral response that can guide these free-living diazotrophs to the optimal niche for nitrogen fixation in the rhizosphere.  相似文献   

7.
The proton motive force (PMF) was determined in Rhodobacter sphaeroides under anaerobic conditions in the dark and under aerobic-dark and anaerobic-light conditions. Anaerobically in the dark in potassium phosphate buffer, the PMF at pH 6 was -20 mV and was composed of an electrical potential (delta psi) only. At pH 7.9 the PMF was composed of a high delta psi of -98 mV and was partially compensated by a reversed pH gradient (delta pH) of +37 mV. ATPase inhibitors did not affect the delta psi, which was most likely the result of a K+ diffusion potential. Under energized conditions in the presence of K+ the delta psi depolarized due to electrogenic K+ uptake. This led to the generation of a delta pH (inside alkaline) in the external pH range of 6 to 8. This delta pH was dependent on the K+ concentration and was maximal at external K+ concentrations larger than 1.2 mM. In energized cells in 50 mM KPi buffer containing 5 mM MgSO4, a delta pH (inside alkaline) was present at external pHs from pH 6 to 8. As a result the overall magnitude of the PMF at various external pHs remained constant at -130 mV, which was significantly higher than the PMF under anaerobic-dark conditions. In the absence of K+, in 50 mM NaPi buffer containing 5 mM MgSO4, no depolarization of the delta psi was found and the PMF was composed of a large delta psi and a small delta pH. The delta pH became even reversed (inside acidic) at alkaline pHs (pH>7.3), resulting in a lowering of the PMF. These results demonstrate that in R. sphaeroides K+ uptake is essential for the generation of a delta pH and plays a central role in the regulation of the internal pH.  相似文献   

8.
The effects of various metabolic inhibitors on the motility of Spirochaeta aurantia were investigated. After 15 min in sodium arsenate buffer, 90% of cells remained motile even though adenosine triphosphate levels dropped from 5.6 to 0.1 nmol/mg (dry weight) of cells. After 70 min in sodium arsenate, 5% of cells were motile. Addition of phenazine methosulfate plus ascorbate at this time resulted in motility of 95% of cells, but adenosine triphosphate levels remained at 0.1 nmol/mg of cell dry weight. Carbonyl cyanide-m-chlorophenyl hydrazone rapidly (within 1 min) and completely inhibited motility of metabolizing cells in potassium phosphate buffer. However, after 15 min in the presence of carbonyl cyanide m-chlorophenyl hydrazone the cellular adenosine triphosphate level was 3.4 nmol/mg (dry weight) of cells, and the rate of oxygen uptake was 44% of the rate measured in the absence of carbonyl cyanide m-chlorophenyl hydrazone. Cells remained motile under conditions where either the electrical potential or the pH gradient across the membrane of S. aurantia was dissipated. However, if both gradients were simultaneously dissipated, motility was rapidly inhibited. This study indicates that a proton motive force, in the form of either a transmembrane electrical potential or a transmembrane pH gradient, is required for motility in S. aurantia. Adenosine triphosphate does not appear to directly activate the motility system in this spirochete.  相似文献   

9.
Aerotaxis (migration towards oxygen) of Bacillus cereus M63, a motile strain, was inhibited by potassium cyanide and 2-heptyl-4-hydroxyquinoline N-oxide, indicating a requirement for both the terminal oxidase (cytochrome aa3) and the cytochrome b segment of the electron transport system. The concentration of oxygen that gave a half-maximal aerotactic response (K0.5) was 0.31 microM, which was similar to the Km for respiration (0.80 microM). The proton motive force increased from -135 to -177 mV when anaerobic cells were aerated, and it is proposed that the signal for aerotaxis is the increase in proton motive force that results from increased respiration. A strain of B. cereus T initially used in this study was immotile, grew as long chains of cells, and was deficient in autolytic enzyme. B. cereus M63 is a spontaneous derivative of B. cereus T that has normal motility.  相似文献   

10.
The utilization of cellulose or cellobiose by Bacteroides succinogenes S85 was severely inhibited at pH values of less than 5.7. Since low pH inhibited the utilization of both cellobiose and cellulose, changes in cellulase activity could not explain the effect. At an extracellular pH of 6.9, the pH gradient (delta pH) across the cell membrane was only 0.07 U. As extracellular pH declined from 6.9 to 5.7, intracellular pH decreased to a smaller extent than extracellular pH and delta pH increased. Below pH 5.7, there was a linear and nearly proportional decrease in intracellular pH. B. succinogenes took up the lipophilic cation tetraphenylphosphonium ion (TPP+) in the presence of cellobiose, and uptake was sensitive to the ionophore valinomycin. As pH was decreased with phosphoric acid, the cells lost TPP+ and electrical potential, delta psi, decreased. From extracellular pH 6.9 to 5.7, the decrease in delta psi was compensated for by an increase in delta pH, and the proton motive force ranged from 152 to 158 mV. At a pH of less than 5.7, there was a large decrease in proton motive force, and this decrease corresponded to the inhibition of cellobiose utilization.  相似文献   

11.
The protein motive force of metabolizing Bacillus subtilis cells was only slightly affected by changes in the external pH between 5 and 8, although the electrical component and the chemical component of the proton motive force contributed differently at different external pH. The electrical component of the proton motive force was very small at pH 5, and the chemical component was almost negligible at pH 7.5. At external pH values between 6 and 7.7, swimming speed of the cells stayed constant. Thus, either the electrical component or the chemical component of the proton motive force could drive the flagellar motor. When the proton motive force of valinomycin-treated cells was quantitatively decreased by increasing the external K+ concentration, the swimming speed of the cells changed in a unique way: the swimming speed was not affected until about--100 mV, then decreased linearly with further decrease in the proton motive force, and was almost zero at about--30 mV. The rotation rate of a flagellum, measured by a tethered cell, showed essentially the same characteristics. Thus, there are a threshold proton motive force and a saturating proton motive force for the rotation of the B. subtilis flagellar motor.  相似文献   

12.
The secretion of protein directly into the extracellular medium by Bacillus amyloliquefaciens, a gram-positive bacterium, was shown to be dependent on proton motive force. When the electrochemical membrane potential gradient of protons was dissipated either by uncouplers or by valinomycin in combination with K+, a precursor form of alpha-amylase accumulated on the cellular membrane. The proton motive force could be dissipated without altering the intracellular level of ATP, indicating that the observed inhibition of export was not the result of decreased ATP concentration.  相似文献   

13.
Nisin depletes ATP and proton motive force in mycobacteria   总被引:5,自引:0,他引:5  
This study examined the inhibitory effect of nisin and its mode of action against Mycobacterium smegmatis, a non-pathogenic species of mycobacteria, and M. bovis-Bacill Carmette Guerin (BCG), a vaccine strain of pathogenic M. bovis. In agar diffusion assays, 2.5 mg ml(-1) nisin was required to inhibit M. bovis-BCG. Nisin caused a slow, gradual, time- and concentration-dependent decrease in internal ATP levels in M. bovis-BCG, but no ATP efflux was detected. In mycobacteria, nisin decreased both components of proton motive force (membrane potential, Delta Psi and Delta pH) in a time- and concentration-dependent manner. However, mycobacteria maintained their intracellular ATP levels during the initial time period of Delta Psi and Delta pH dissipation. These data suggest that the mechanism of nisin in mycobacteria is similar to that in food-borne pathogens.  相似文献   

14.
Oxygen taxis and proton motive force in Salmonella typhimurium   总被引:16,自引:0,他引:16  
The aerotactic response of Salmonella typhimurium SL3730 has been quantitatively correlated with a change in the proton motive force (delta p) as measured by a flow-dialysis technique. At pH 7.5, the membrane potential (delta psi) in S. typhimurium changed from -162 +/- 13 to -111 +/- 15 mV when cells grown aerobically were made anaerobic, and it returned to the original value when the cells were returned to aerobiosis. The delta pH across the membrane was zero. At pH 5.5, delta psi was -70 mV in aerobiosis and -20 mV in anaerobiosis, and delta pH was -118 and -56 mV for aerobic and anaerobic cells, respectively. A decrease in delta p resulted in increased tumbling, and an increase in delta p resulted in a smooth swimming response at either pH. Inhibition of aerotaxis at pH 7.5 by various concentrations of KCN correlated with a decreased delta p, due to a decreased delta psi in aerobiosis and little change in delta psi in anaerobiosis. At concentrations up to 100 mM, 2,4-dinitrophenol decreased delta psi, but did not inhibit aerotaxis because the difference between delta psi in aerobic and anaerobic cells remained constant. Considered as a whole, the results indicate that aerotaxis in S. typhimurium is mediated by delta p.  相似文献   

15.
Genome size of the rickettsia Coxiella burnetii.   总被引:7,自引:3,他引:4       下载免费PDF全文
The genome size of Coxiella burnetii Nine Mile strain was determined by the method of initial rate of deoxyribonucleic acid renaturation. The mean value obtained was 1.04 X 10(9) daltons.  相似文献   

16.
17.
Several different proton pumps were used to generate a proton motive force (delta p, proton motive force across the mitochondrial inner membrane) in isolated rat liver mitochondria, and the relationship between delta p and pump rate was investigated by titrating with various inhibitors of the pumps. It was found that this relationship was the same for mitochondria respiring on succinate irrespective of whether respiration was inhibited with malonate, antimycin or cyanide, indicating that the relationship was independent of the redox state of the respiratory chain. When delta p was generated by either the cytochrome bc1 complex, cytochrome oxidase, both together, or ATP hydrolysis (and transport), the reaction rates (in moles of electrons or ATP) were in the ratio of close to 3:1.5:1:1, respectively, at all accessible values of delta p. This suggests that the proton stoichiometries (H+/e and H+/ATP, where H+/e is the number of protons translocated vectorially across the inner membrane per electron transferred by the respiratory chain and H+/ATP is the number of protons translocated vectorially per ATP molecule hydrolyzed externally) were in the ratio of close to 1:2:3:3, respectively, at all values of delta p. Possible reasons for previous contradictory results are suggested.  相似文献   

18.
Detailed physiological studies were done to compare the influence of environmental pH and fermentation end product formation on metabolism, growth, and proton motive force in Sarcina ventriculi. The kinetics of end product formation during glucose fermentation in unbuffered batch cultures shifted from hydrogen-acetate production to ethanol production as the medium pH dropped from 7.0 to 3.3. At a constant pH of 3.0, the production of acetate ceased when the accumulation of acetate in the medium reached 40 mmol/liter. At a constant pH of 7.0, acetate production continued throughout the entire growth time course. The in vivo hydrogenase activity was much higher in cells grown at pH 7.0 than at pH 3.0. The magnitude of the proton motive force increased in relation to a decrease of the medium pH from 7.5 to 3.0. When the organism was grown at pH 3.0, the cytoplasmic pH was 4.25 and the organism was unable to exclude acetic acid or butyric acid from the cytoplasm. Addition of acetic acid, but not hydrogen or ethanol, inhibited growth and resulted in proton motive force dissipation and the accumulation of acetic acid in the cytoplasm. The results indicate that S. ventriculi is an acidophile that can continue to produce ethanol at low cytoplasmic pH values. Both the ability to shift to ethanol production and the ability to continue to ferment glucose while cytoplasmic pH values are low adapt S. ventriculi for growth at low pH.  相似文献   

19.
The mechanism by which acidophilic bacteria generate and maintain their cytoplasmic pH close to neutrality was investigated. For this purpose we determined the components of proton motive force in the eubacterium Bacillus acidocaldarius and the archaebacterium Thermoplasma acidophilum. After correction for probe binding, the proton motive force of untreated cells was 190 to 240 mV between external pH 2 and 4. Anoxia diminished total proton motive force and the transmembrane pH difference by 60 to 80 mV. The protonophore 2,4-dinitrophenol abolished the total proton motive force almost completely and diminished the transmembrane pH difference by at least two units. However, even after correction for probe binding, protonophore-treated cells maintained a pH difference of approximately one unit.  相似文献   

20.
The basal proton motive force (PMF) levels and the influence of the bacteriocin nisin on the PMF were determined in Listeria monocytogenes Scott A. In the absence of nisin, the interconversion of the pH gradient (Z delta pH) and the membrane potential (delta psi) led to the maintenance of a fairly constant PMF at -160 mV over the external pH range 5.5 to 7.0. The addition of nisin at concentrations of greater than or equal to 5 micrograms/ml completely dissipated PMF in cells at external pH values of 5.5 and 7.0. With 1 microgram of nisin per ml, delta pH was completely dissipated but delta psi decreased only slightly. The action of nisin on PMF in L. monocytogenes Scott A was both time and concentration dependent. Valinomycin depleted only delta pH, whereas nigericin and carbonyl cyanide m-chlorophenylhydrazone depleted only delta psi, under conditions in which nisin depleted both. Four other L. monocytogenes strains had basal PMF parameters similar to those of strain Scott A. Nisin (2.5 micrograms/ml) also completely dissipated PMF in these strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号