首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protective immunity against intracellular pathogen Mycobacterium leprae is dependent on the activation of T cells. Repeated stimulation of T cells by M. leprae antigens MLCwA (M. leprae total cell wall antigen) and ManLAM (mannose-capped lipoarabinomannan), may lead to apoptosis in leprosy patients. In the present study, inhibition of the Fas-induced apoptosis of peripheral blood mononuclear cells of leprosy patients was investigated using above M. leprae antigen(s), in combination with immunomodulators murabutide (MB) and a Trat peptide in particulate form (liposome). Incubation of the cells with antigen containing the two immunomodulators in particulate form (liposomes) led to decrease in percentage of propidium iodide positive cells and T cells expressing Fas–FasL as well as decreased caspase-8/-3 activities in lepromatous patients, thereby inhibiting apoptosis, while converse was true upon stimulation with soluble antigen. Concurrently, there was an upregulation of antiapoptotic protein Bcl-xL in lepromatous patients, leading to the inhibition of apoptosis. It was also observed that same formulation upregulated the expression of CD40 on B cells and monocytes-macrophages and CD40L on T cells of lepromatous leprosy patients. The same liposomal formulation significantly increased the expression of CD1b and CD1d on monocytes-macrophages as well as percentage of NKT cells secreting IFN-γ in lepromatous leprosy patients. Thus, the liposomal formulation of antigen with the immunomodulators in vitro promoted the activation of CD40:CD40L pathways and NKT cell function involved in providing cell-mediated immunity to these patients. The same formulation also caused reversal of T cell anergy by inhibiting apoptosis through decreased expression of death receptors (Fas–FasL) and caspase activities (3 and 8) and increased expression of antiapoptotic protein Bcl-xL in these patients.  相似文献   

2.
Induction of Th1 cytokines, those associated with cell-mediated immunity, is critical for host defense against infection by intracellular pathogens, including mycobacteria. Signaling lymphocytic activation molecule (SLAM, CD150) is a transmembrane protein expressed on lymphocytes that promotes T cell proliferation and IFN-gamma production. The expression and role of SLAM in human infectious disease were investigated using leprosy as a model. We found that SLAM mRNA and protein were more strongly expressed in skin lesions of tuberculoid patients, those with measurable CMI to the pathogen, Mycobacterium leprae, compared with lepromatous patients, who have weak CMI against M. leprae. Peripheral blood T cells from tuberculoid patients showed a striking increase in the level of SLAM expression after stimulation with M. leprae, whereas the expression of SLAM on T cells from lepromatous patients show little change by M. leprae stimulation. Engagement of SLAM by an agonistic mAb up-regulated IFN-gamma production from tuberculoid patients and slightly increased the levels of IFN-gamma in lepromatous patients. In addition, IFN-gamma augmented SLAM expression on M. leprae-stimulated peripheral blood T cells from leprosy patients. Signaling through SLAM after IFN-gamma treatment of Ag-stimulated cells enhanced IFN-gamma production in lepromatous patients to the levels of tuberculoid patients. Our data suggest that the local release of IFN-gamma by M. leprae-activated T cells in tuberculoid leprosy lesions leads to up-regulation of SLAM expression. Ligation of SLAM augments IFN-gamma production in the local microenvironment, creating a positive feedback loop. Failure of T cells from lepromatous leprosy patients to produce IFN-gamma in response to M. leprae contributes to reduced expression of SLAM. Therefore, the activation of SLAM may promote the cell-mediated immune response to intracellular bacterial pathogens.  相似文献   

3.
The generation of cell-mediated immunity against intracellular infection involves the production of IL-12, a critical cytokine required for the development of Th1 responses. The biologic activities of IL-12 are mediated through a specific, high affinity IL-12R composed of an IL-12Rbeta1/IL-12Rbeta2 heterodimer, with the IL-12Rbeta2 chain involved in signaling via Stat4. We investigated IL-12R expression and function in human infectious disease, using the clinical/immunologic spectrum of leprosy as a model. T cells from tuberculoid patients, the resistant form of leprosy, are responsive to IL-12; however, T cells from lepromatous patients, the susceptible form of leprosy, do not respond to IL-12. We found that the IL-12Rbeta2 was more highly expressed in tuberculoid lesions compared with lepromatous lesions. In contrast, IL-12Rbeta1 expression was similar in both tuberculoid and lepromatous lesions. The expression of IL-12Rbeta2 on T cells was up-regulated by Mycobacterium leprae in tuberculoid but not in lepromatous patients. Furthermore, IL-12 induced Stat4 phosphorylation and DNA binding in M. leprae-activated T cells from tuberculoid but not from lepromatous patients. Interestingly, IL-12Rbeta2 in lepromatous patients could be up-regulated by stimulation with M. tuberculosis. These data suggest that Th response to M. leprae determines IL-12Rbeta2 expression and function in host defense in leprosy.  相似文献   

4.
The interaction of CD40 ligand (CD40L) expressed by activated T cells with CD40 on macrophages has been shown to be a potent stimulus for the production of IL-12, an obligate signal for generation of Th1 cytokine responses. The expression and interaction of CD40 and CD40L were investigated in human infectious disease using leprosy as a model. CD40 and CD40L mRNA and surface protein expression were predominant in skin lesions of resistant tuberculoid patients compared with the highly susceptible lepromatous group. IL-12 release from PBMC of tuberculoid patients stimulated with Mycobacterium leprae was partially inhibited by mAbs to CD40 or CD40L, correlating with Ag-induced up-regulation of CD40L on T cells. Cognate recognition of M. leprae Ag by a T cell clone derived from a tuberculoid lesion in the context of monocyte APC resulted in CD40L-CD40-dependent production of IL-12. In contrast, M. leprae-induced IL-12 production by PBMC from lepromatous patients was not dependent on CD40L-CD40 ligation, nor was CD40L up-regulated by M. leprae. Furthermore, IL-10, a cytokine predominant in lepromatous lesions, blocked the IFN-gamma up-regulation of CD40 on monocytes. These data suggest that T cell activation in situ by M. leprae in tuberculoid leprosy leads to local up-regulation of CD40L, which stimulates CD40-dependent induction of IL-12 in monocytes. The CD40-CD40L interaction, which is not evident in lepromatous leprosy, probably participates in the cell-mediated immune response to microbial pathogens.  相似文献   

5.
In leprosy, the common etiologic agent is the same Mycobacterium leprae, but the clinical manifestations are various, including the tuberculoid and lepromatous types. In tuberculoid type leprosy, macrophages in the granuloma differentiate into epithelioid cells; in the lepromatous type, in contrast, they differentiate into lepra cells containing multiple M. leprae. Thus host factors, which regulate macrophage activities, determine the type of leprosy. To understand such regulation of macrophage activities, we assayed superoxide production, hydrogen peroxide production and glucose consumption in monocytes in vitro. Glucose consumption spontaneously increased, with lymphokine enhancing the consumption rate. Superoxide production increased spontaneously and decreased from the 4th day; lymphokine added on the 4th day supressed the decrease of superoxide production. Hydrogen peroxide production increased until the 3rd day of culture. Twenty-four hour incubation with lymphokine, from day 0 to the 1st day, had no effect on hydrogen peroxide production, while from the 2nd to 3rd day it enhanced such production. Supernatants of lymphocytes incubated with M. leprae were prepared from tuberculoid and lepromatous patients. Tuberculoid supernatant enhanced reactive oxygen production and glucose consumption, while that from lepromatous patients had no remarkable effect on glucose consumption or reactive oxygen production. The range of spontaneous increase and decrease of reactive oxygen production was greater than the regulatory effect of lymphokine on these activities. These data show that rapid provision of new monocytes to the granuloma is one of the important factors in the defense mechanism, that lymphocytes separated from lepromatous patients are not activated in response to M. leprae antigen, and that they do not secrete corresponding lymphokines.  相似文献   

6.
The extent to which M. leprae and its products induced suppression of T lymphocyte proliferation in vitro was evaluated. M. leprae antigens suppressed T cell proliferation in response to mitogens and antigens in both lepromatous and tuberculoid patients, as well as controls never exposed to M. leprae or M. leprae endemic areas. Both soluble and particulate fractions of M. leprae were found to suppress proliferation in a dose-dependent manner. The extent of suppression was inversely related to the proliferative response of the donors mononuclear cells to M. leprae. Evidence indicates that M. leprae contains both stimulatory and suppressive molecules for T cells. One such suppressive antigen, Lipoarabinomannan (LAM)-B of M. leprae, also suppressed the proliferative response of tuberculoid patients. Suppression was also observed with the LAM-B of M. tuberculosis. The suppressive effects observed were not due to the toxicity of the antigen. Some of the suppressive activity was mediated by T8+ suppressor cells and was expressed in both lepromatous and tuberculoid patients. We suggest that previous sensitization to M. leprae and other cross-reactive mycobacterial antigens determines the sensitivity of T cells to the suppressive effects of M. leprae antigens.  相似文献   

7.
Patients with lepromatous leprosy (LL) but not borderline tuberculoid leprosy (BT) have defective cell-mediated immune responses to Mycobacterium leprae, despite normal responses to other stimuli, as judged by in vivo skin testing and in vitro lymphocyte transformation. To investigate the basis of the immune defect in LL patients, we studied the ability of patient mononuclear leukocytes to produce interleukin 1 (IL 1) and interleukin 2 (IL 2) upon stimulation with M. leprae, and determined the ability of exogenous IL 1 and IL 2 to reconstitute the LL patient response to this antigen in vitro. Equal numbers of adherent non-T cells from LL and BT patients produced similar amounts of IL 1 upon challenge with M. leprae, and addition of IL 1 to the culture medium failed to reconstitute the response of lymphocytes from LL patients to M. leprae. On the other hand, T cells of LL patients failed to express receptors for IL 2 or to produce IL 2 in response to M. leprae, whereas similarly treated T cells of BT patients both expressed IL 2 receptors and produced IL 2. Finally, recombinant human IL 2 purified to homogeneity as well as crude supernatants of mitogen-activated lymphocytes failed to reconstitute the response of LL patients to M. leprae. These results suggest that T cells of LL patients fail to respond to M. leprae despite an ability to produce IL 1 and that their failure to express receptors for IL 2 may explain both defective proliferation and the failure of exogenous IL 2 to reconstitute the response.  相似文献   

8.
Apoptosis eliminates pathogen-infected cells. Its modulation can influence the course of infections, permitting the survival of intracellular pathogens. In leprosy, which presents several clinical manifestations related to bacillary burden and host immune status, the mechanisms responsible for the persistence of the bacillus are unknown. Few studies have focused on apoptosis over the disease spectrum and as a defense mechanism against Mycobacterium leprae. We evaluated apoptosis using terminal transferase dUTP nick end labeling and the expression of Bcl-2 by immunohistochemistry in skin lesions from 11 tuberculoid and 15 lepromatous leprosy patients. Each specimen was evaluated by determining the number of positive cells in 10 fields at × 400 magnification. We observed a higher number of apoptotic cells in tuberculoid lesions in comparison with lepromatous leprosy (42.5 cells per 10 fields vs. 11.5 cells per 10 fields, P<0.0001). Expression of Bcl-2, conversely, was larger in lepromatous than in tuberculoid samples (172.0 cells per 10 fields vs. 17.7 cells per 10 fields, P<0.0001). These observations suggest modulation of apoptosis in leprosy, primarily in lepromatous patients, for which the decrease in cell death could support M. leprae survival and contribute to the success of infection. Conversely, in tuberculoid patients, apoptosis could contribute to reducing propagation of the bacillus.  相似文献   

9.
Suppressor T lymphocytes from lepromatous leprosy skin lesions   总被引:13,自引:0,他引:13  
The immune response in leprosy forms a spectrum with lepromatous leprosy patients exhibiting specific unresponsiveness to antigens of Mycobacterium leprae. This unresponsiveness is thought to be related to the prevalence of T8-positive lymphocyte in these lepromatous lesions. To analyze the immunoregulatory function of these T8 cells, we developed simple procedures to extract lymphocytes from skin biopsy specimens of patients with leprosy. These lymphocytes were sorted for T8 and T4 positive cells, and cell lines were established by expansion with interleukin 2 (IL 2) and irradiated feeder cells. All T8 positive lines tested were positive for IL 2 receptors and HLA-DR determinants. These lines were additionally assayed for lepromin-induced suppression of the normal peripheral blood lymphocyte Con A proliferative response. Thirteen of 32 lines from six lepromatous patients showed significant suppressor activity, whereas nine lines from six tuberculoid patients and one line from normal peripheral blood failed to show suppression (p less than 0.001). Taken together, the finding of M. leprae-triggered suppressor cells within lepromatous skin lesions may in part explain the M. leprae unresponsiveness of lepromatous leprosy patients.  相似文献   

10.
T lymphocytes from patients with lepromatous leprosy (LL) characteristically fail to respond to Mycobacterium leprae. This specific immunologic defect is thought to contribute to the aggressive clinical course that typifies patients with LL. We report that although fresh CD4+ (helper) T cells from most LL patients are specifically unresponsive to M. leprae, after culture in medium alone for 48 hr the same cells respond to M. leprae antigens. The recovery of T cell function is specific for M. leprae, occurs at the level of responder CD4+ T cells, and is not affected by monocytes or CD8+ (suppressor) T cells. Recovery of T cell reactivity is blocked by the presence of M. leprae bacilli in the preculture medium. These findings indicate that despite the apparent specific anergy seen in patients with LL, the T cells of most LL patients can respond to M. leprae. Their failure to do so, in vivo, may be due to the persistence of antigen, which renders antigen-reactive T cells nonresponsive either directly or via activation of CD4+ suppressor cells.  相似文献   

11.
Proliferative responses of peripheral blood mononuclear cells (PBMC) to Mycobacterium leprae and bacillus Calmette Guerin-derived purified protein derivative (PPD) were studied in the presence or absence of interleukin 2 (IL 2) in high M. leprae responders (tuberculoid leprosy patients and healthy subjects) and low M. leprae responders (lepromatous leprosy patients). High responders in most cases developed a strong proliferative response to both antigens in the absence of IL 2. Additional IL 2 and restimulation with antigen plus autologous antigen-presenting cells (APC) allowed the derivation of antigen-specific T cell lines. The lines were assayed for proliferative responses to several mycobacterial antigens. Both PPD and M. leprae-triggered T cell lines exhibited a good proliferative response to either antigen and showed in addition a broad cross-reactivity with other mycobacteria, suggesting a preferential T cell response to epitopes shared by several mycobacterial species. Within the lepromatous group, 50% of the patients studied could mount a proliferative response to PPD antigen in the absence of IL 2, but none of them was able to do so with M. leprae antigen. The addition of IL 2 increased the number of positive responders to PPD in this group, and in some patients IL 2 was able to restore M. leprae reactivity as well, suggesting that IL 2 had overcome a suppressor mechanism. PPD and M. leprae-triggered T cell lines were obtained from these subjects (with IL 2 added from the beginning of the culture when required). M. leprae lines exhibited variable and unstable pattern of specificity, most lines exhibiting, at least transiently, a cross-reactive response to other mycobacteria, but some displaying only M. leprae-specific response. In contrast, PPD lines from these subjects consistently exhibited a good response to PPD, a lesser response to various other mycobacteria and no response to M. leprae, a pattern differing from that obtained with PPD lines of high M. leprae responders. Co-cultures of irradiated lepromatous PPD triggered T cell lines with fresh autologous PBMC non-specifically reduced the proliferative response of the latter to PPD, as well as to unrelated antigens. A similar suppression was also observed when PPD lines from one of the tuberculoid patients were assayed. PPD and M. leprae T cell lines from both high and low responders initially exhibited the same CD4+ CD8- phenotype. In all cases, antigenic specificity declined and could not be maintained after 5 to 8 wk of continuous culture, a change associated with the progressive appearance of CD8+ and Leu8+ cells.  相似文献   

12.
The repertoires of CD1- and MHC-restricted T cells are complementary, permitting the immune recognition of both lipid and peptide Ags, respectively. To compare the breadth of the CD1-restricted and MHC-restricted T cell repertoires, we evaluated T cell responses against lipid and peptide Ags of mycobacteria in leprosy, comparing tuberculoid patients, who are able to restrict the pathogen, and lepromatous patients, who have disseminated infection. The striking finding was that in lepromatous leprosy, T cells did not efficiently recognize lipid Ags from the leprosy pathogen, Mycobacterium leprae, or the related species, Mycobacterium tuberculosis, yet were able to efficiently recognize peptide Ags from M. tuberculosis, but not M. leprae. To identify a mechanism for T cell unresponsiveness against mycobacterial lipid Ags in lepromatous patients, we used T cell clones to probe the species specificity of the Ags recognized. We found that the majority of M. leprae-reactive CD1-restricted T cell clones (92%) were cross-reactive for multiple mycobacterial species, whereas the majority of M. leprae-reactive MHC-restricted T cells were species specific (66%), with a limited number of T cell clones cross-reactive (34%) with M. tuberculosis. In comparison with the MHC class II-restricted T cell repertoire, the CD1-restricted T cell repertoire is limited to recognition of cross-reactive Ags, imparting a distinct role in the host response to immunologically related pathogens.  相似文献   

13.
Monocyte-derived macrophages from 14 patients with lepromatous leprosy respond to rIFN-gamma with an enhanced secretion of H2O2 in a fashion similar to that of cells obtained from normal donors. The activation is not dependent on the cutaneous bacterial index, the length of treatment, or the stage and activity of the disease. H2O2 release can be triggered in these cells both by phorbol myristate acetate and by intact irradiated Mycobacterium leprae. Uptake of M. leprae by both normal donors' and patients' macrophages is proportional to the number of bacilli added. Prior ingestion of M. leprae does not interfere with the ability of macrophages to respond to IFN-gamma by the production of oxygen intermediates. We conclude that the immune defect in lepromatous leprosy probably results from a lack of response to M. leprae by the patients' T cells rather than an inability of mononuclear phagocytes to respond to IFN-gamma.  相似文献   

14.
Recent studies in basic immunology have been directed towards the understanding of the mechanism of T cell activation. T cells can be activated to proliferatevia the classical pathway through the antigen receptor (CD3-Ti) orvia the alternate pathway through the CD2 receptor. Since immunologic unresponsiveness in lepromatous leprosy is considered to be due to the inability of T cells to proliferate upon stimulation, we have been interested in the nature of these receptors and the activation pathways in lymphocytes of leprosy patients. In the present investigation we demonstrate: (i) CD2 receptor (E-receptor) is downregulated in bacterial index positive lepromatous leprosy patients. (ii) The alternate pathway of T cell activation is impaired in lepromatous patients as revealed by the inability of their lymphocytes to proliferate in response to a pair of mitogenic anti-CD2 monoclonals. (iii) The addition of recombinant interleukin 2in vitro restores the ability of lymphocytes from lepromatous patients to proliferate in response to anti-CD2 antibodies. (iv) Interestingly, CD2 modulation and the associated functional impairment could be brought about in peripheral blood lymphocytes from normal subjects by prior treatment withMycobacterium leprae in vitro. This approach would be useful in understanding the molecular events leading to the defective T cell functions in leprosy.  相似文献   

15.
Lymphocyte transformation has been used to study the immune response to Mycobacterium leprae among contacts and non-contacts of leprosy patients. Of 26 subjects living in a leprosy endemic area for less than two months none responded to M. leprae; 24% of subjects who had lived in an endemic area for more than a year gave a positive response to M. leprae; more than 50% of individuals with occupational contact of leprosy for more than a year responded; and about 50% of contacts of tuberculoid and treated lepromatous patients responded to M. leprae, while only 22% (4/18) of contacts of lepromatous patients treated for less than six months responded.It seems that leprosy is more highly infectious than is indicated by the prevalence of the disease and that a subclinical infection commonly follows exposure to M. leprae. The relatively low response found in contacts of active lepromatous patients suggests that in these contacts “superexposure” to M. leprae can bring about a decrease in host resistance.  相似文献   

16.
M A Bach  P Launois 《Biochimie》1988,70(8):1013-1018
Patients suffering from lepromatous leprosy fail to develop an efficient cell-mediated immunity towards Mycobacterium leprae, the causative agent. The mechanism of such a specific T-cell tolerance to the bacillus remains a key question in the pathophysiology of leprosy. Macrophages do not show any intrinsic defect in phagocytizing and killing M. leprae or in presenting antigen to helper T-cells. On the other hand, M. leprae-reactive helper T-cells do persist in lepromatous patients, but their activation appears to prevented by active suppressor mechanisms, involving both suppressor T-cells and macrophages. The target of this specific suppression could be the interleukin 2-producing T-cell subset. A better molecular definition of M. leprae antigens, both by monoclonal antibodies and T-cell clones, should open new perspectives for further analysis of the regulation of immune responses to M. leprae.  相似文献   

17.
We sought to evaluate cell-mediated immune responses in erythema nodosum leprosum (ENL), a reactional state occurring in lepromatous leprosy. Skin biopsies from patients with leprosy were studied with monoclonal antibodies against T lymphocyte antigenic determinants, interleukin 2 (IL 2), and IL 2 receptors (Tac) by using immunoperoxidase staining of frozen sections. Peripheral blood lymphocytes from 18 ENL patients were tested in vitro for lepromin-induced suppression of Con A stimulation. Serial studies of seven lepromatous patients who developed ENL during the course of the study showed increases in both the Leu-3a:Leu-2a ratio and the number of IL 2-positive cells. IL 2-positive cells comprised 0.3% of the cells in all of the ENL lesions studied as compared with the 0.03% found in nonreactional lepromatous lesions (P less than 0.001). Lepromin-induced suppression of the Con A response, present in nonreactional lepromatous patients, significantly decreased in patients developing the ENL reaction, but returned after recovery from ENL. These changes in tissues and peripheral blood suggest that the pathogenesis of ENL is related to cell-mediated immune processes. Despite these immunologic changes, however, ENL patients do not recover antigen-specific skin tests or eliminate Mycobacterium leprae.  相似文献   

18.
A sensitive specific radioimmunoassay was developed to measure antibodies against BCG antigen 60, a prominent antigenic component of BCG bacilli which cross-reacts with similar components in many mycobacterial species including Mycobacterium leprae and M tuberculosis. A lepromatous serum pool had anti-BCG-60 activity with a titre of 10(5) and the tuberculoid pool a titre of 10(4). Testing of individual sera showed striking variations within groups of patients with lepromatous and tuberculoid leprosy. In five of the 20 tuberculoid leprosy sera the anti-BCG-60 activity was above the median for the lepromatous group. The current view that antibody formation against mycobacterial antigens is very low in tuberculoid leprosy thus no longer appears to be tenable. Sera from eight patients with active pulmonary tuberculosis also showed a striking variation in anti-BCG-60 content, and the median value of this group was even higher than in those with lepromatous leprosy.  相似文献   

19.
T cell production of IFN-gamma contributes to host defense against infection by intracellular pathogens, including mycobacteria. Lepromatous leprosy, the disseminated form of infection caused by Mycobacterium leprae, is characterized by loss of cellular response against the pathogen and diminished Th1 cytokine production. Relieving bacterial burden in Ag-unresponsive patients might be achieved through alternative receptors that stimulate IFN-gamma production. We have previously shown that ligation of signaling lymphocytic activation molecule (SLAM) enhances IFN-gamma in mycobacterial infection; therefore, we investigated molecular pathways leading from SLAM activation to IFN-gamma production in human leprosy. The expression of the SLAM-associated protein (an inhibitory factor for IFN-gamma induction) on M. leprae-stimulated cells from leprosy patients was inversely correlated to IFN-gamma production. However, SLAM ligation or exposure of cells from lepromatous patients to a proinflammatory microenvironment down-regulated SLAM-associated protein expression. Moreover, SLAM activation induced a sequence of signaling proteins, including activation of the NF-kappaB complex, phosphorylation of Stat1, and induction of T-bet expression, resulting in the promotion of IFN-gamma production, a pathway that remains quiescent in response to Ag in lepromatous patients. Therefore, our findings reveal a cascade of molecular events during signaling through SLAM in leprosy that cooperate to induce IFN-gamma production and strongly suggest that SLAM might be a focal point for therapeutic modulation of T cell cytokine responses in diseases characterized by dysfunctional Th2 responses.  相似文献   

20.
The antigenicity of Mycobacterium leprae (M. leprae)-derived cell membrane fraction was examined using human dendritic cells (DCs). Immature DCs internalized and processed the cell membrane components, and expressed M. leprae-derived antigens (Ags) on their surface. The expression of MHC class II, CD86, and CD83 Ags on DCs and CD40 ligand (L)-associated IL-12 p70 production from DCs were up-regulated by the membrane Ags. Moreover these stimulated DCs induced significantly higher level of interferon-gamma (IFN-gamma) production by autologous CD4(+) and CD8(+) T cells than those pulsed with equivalent doses of live M. leprae or its cytosol fraction. Both subsets of T cells from tuberculoid leprosy patients also produced several fold more IFN-gamma than those from normal individuals. Furthermore, the intracellular perforin production in CD8(+) T cells was up-regulated in an Ag-dose dependent manner. These results suggest that M. leprae membrane Ags might be useful as the vaccinating agents against leprosy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号