首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular smooth muscle cells (VSMC) at capacitance arteries of hypertensive individuals and animals undergo dramatic polyploidization that contributes toward their hypertrophic phenotype. We report here the identification of a defective mitotic spindle cell cycle checkpoint in VSMC isolated from capacitance arteries of pre-hypertensive rats. These cells demonstrated a high predisposition to polyploidization in culture and failed to maintain cyclin B protein levels in response to colcemid, a mitotic inhibitor. Furthermore, this altered mitotic spindle checkpoint status was associated with the overexpression of Cks1, a Cdc2 adapter protein that promotes cyclin B degradation. Cks1 up-regulation, cyclin B down-regulation, and VSMC polyploidization were evidenced at the smooth muscle of capacitance arteries of genetically hypertensive and Goldblatt-operated rats. In addition, angiotensin II infusion dramatically increased Cks1 protein levels at capacitance arteries of normotensive rats, and angiotensin II treatment of isolated VSMC abrogated their ability to down-regulate Cks1 and maintain cyclin B protein expression in response to colcemid. Finally, transduction of VSMC from normotensive animals with a retrovirus that drives the expression of Cks1 was sufficient to alter their mitotic spindle cell cycle checkpoint status and promote unscheduled cyclin B metabolism, cell cycle re-entry, and polyploidization. These data demonstrate that Cks1 regulates cyclin B metabolism and ploidy in VSMC and may contribute to the understanding of the phenomena of VSMC polyploidization during hypertension.  相似文献   

2.
Although considered a pericellular matrix component, hyaluronan was recently localized in the cytoplasm and nucleus of proliferating cells, supporting earlier reports that hyaluronan was present in locations such as the nucleus, rough endoplasmic reticulum, and caveolae. This suggests that it can play roles both inside and outside the cell. Hyaluronan metabolism is coupled to mitosis and cell motility, but it is not clear if intracellular hyaluronan associates with cytoskeletal elements or plays a structural role. Here we report the distribution of intracellular hyaluronan, microtubules, and RHAMM in arterial smooth muscle cells in vitro. The general distribution of intracellular hyaluronan more closely resembled microtubule staining rather than actin filaments. Hyaluronan was abundant in the perinuclear microtubule-rich areas and was present in lysosomes, other vesicular structures, and the nucleolus. Partially fragmented fluorescein-hyaluronan was preferentially translocated to the perinuclear area compared with high-molecular-weight hyaluronan. In the mitotic spindle, hyaluronan colocalized with tubulin and with the hyaladherin RHAMM, a cell surface receptor and microtubule-associated protein that interacts with dynein and maintains spindle pole stability. Internalized fluorescein-hyaluronan was also seen at the spindle. Following telophase, an abundance of hyaluronan near the midbody microtubules at the cleavage furrow was also noted. In permeabilized cells, fluorescein-hyaluronan bound to RHAMM-associated microtubules. These findings suggest novel functions for hyaluronan in cellular physiology.  相似文献   

3.
The heterogeneity of vascular smooth muscle cells is well established in tissue culture, but their differential responses to growth factors are not completely defined. We wished to identify effects of epidermal growth factor (EGF) on vascular smooth muscle cells in distinct phenotypes, such as spindle and epithelioid. We found that the EGF receptors were abundant in epithelioid cells but not spindle cells. EGF treatment inhibited serum-independent DNA synthesis, which was absent in spindle cells, of epithelioid cells. Additionally, using a pulse-chase assay, we found that bromodeoxyuridine-labeled cells failed to re-enter the S phase in the presence of EGF. These EGF effects were abolished by either inhibiting the EGF receptor tyrosine kinase with AG1478 or inhibiting the mitogen-activated protein kinase pathway with PD98059. In response to treatment with EGF, the EGF receptor was phosphorylated, which was correlated with phosphorylation and activation of p42/44 mitogen-activated protein kinases. Inhibition of EGF receptor phosphorylation and mitogen-activated protein kinase activation resulted in a reversal of the EGF-induced inhibition of bromodeoxyuridine incorporation and cell cycle arrest. Subsequent studies revealed that the activation of the EGF receptor and the mitogen-activated protein kinase pathway in epithelioid cells induced expression of the cell cycle inhibitory protein p27Kip1 but not p21Cip1. Taken together, our data demonstrate that the EGF receptor is abundantly expressed in epithelioid vascular smooth muscle cells and that the activation of this receptor results in cell cycle arrest through activation of the mitogen-activated protein kinase pathway.  相似文献   

4.
Comparison of elemental concentrations in growth-arrested airway smooth muscle cells with those in their proliferating counterpart showed that potassium (K(+)) was significantly reduced, whereas concentrations of other elements sodium (Na(+)), magnesium (Mg(2+)), phosphorus (P), and chlorine (Cl(-)) remained unchanged. Reduced K(+)concentration was associated with a change in the cells from a spindle shape to a flattened form.  相似文献   

5.
Aging and hypertension are accompanied by an increase in mass and rigidity of arterial walls. At capacitance arteries, the enlargement and stiffness of the medial smooth muscle layer promote systolic hypertension and contribute to left ventricular hypertrophy and cardiovascular morbidity. Morphological studies have demonstrated that vascular smooth muscle cell (VSMC) hypertrophy, with minimal hyperplasia, causes the enlargement of vascular smooth muscle at capacitance arteries, and that VSMC hypertrophy is strongly associated with VSMC polyploidization. Recent studies demonstrate that hypertrophic signals, such as those elicited by Angiotensin II, abrogate the mechanisms of control of M phase in VSMC and induce cell cycle re-entry and polyploidization. These polyploid VSMC have a lower replicative rate, but a higher mass, protein content and matrix production than their diploid counterparts. Both, the protein kinase Aktl and the cyclin kinase-associated protein CKsl, have been implicated in the mechanism of VSMC polyploidization during hypertension. Here, we review the function of these proteins at the mitotic spindle cell cycle checkpoint and their role in the process of VSMC polyploidization.  相似文献   

6.
Summary Due to limited growth potential of primary cultures and the absence of continuous lines of healthy enteric smooth muscle, we have studied the culture behavior of neoplastic gastrointestinal smooth muscle cells. Forty-six human enteric smooth muscle neoplasms (leiomyomas and leiomyosarcomas) were studied while fresh and/or after culture in vitro and growth in vivo in athymic nude mice, with assessments made of morphology, growth characteristics, and biochemical markers of differentiation. The state of differentiation of the tumors varied, with well-differentiated tumors tending to express binding sites for the gastrointestinal hormone cholecystokinin, whereas less well-differentiated tumors did not. Poorly differentiated tumors were the easiest to establish in culture in vitro and to grow in vivo in nude mice. When the cells placed directly into culture proliferated to confluent density, they underwent morphologic differentiation from a spread, fibroblastlike shape to a slender spindle morphology, with these cells possessing fewer biosynthetic organelles and arranging themselves in characteristic “hill and valley” arrays. However, the highly differentiated characteristics of expression of desmin or cholecystokinin-binding sites were not observed in cultured cells. In contrast, cells that had been passaged in nude mice before culture displayed a proliferative phenotype and failed to undergo morphologic differentiation on reaching confluent density. Four human enteric smooth muscle cell lines (documented by chromosomal analysis) originating in stomach, jejunum, ileum, and rectum were established using this strategy. This work was supported by grants DK32878 and DK34988 from the National Institutes of Health, Bethesda, MD.  相似文献   

7.
We have developed a novel cell culturesystem that supports the shortening of smooth muscle cells. Primary ratairway smooth muscle cells were plated on an ethanol-fixed, confluentmonolayer of homologous smooth muscle cells (homologous cell substrate, HCS). Cells grown on HCS exhibited morphological and functional characteristics consistent with a differentiated phenotype. Cells onHCS were spindle shaped with a well-defined long axis, whereas cellsgrown on glass were larger and irregularly shaped. Smooth muscle-specific -actin immunostained diffusely in cells on HCS, whereas it appeared as stress fibers in cells on glass. Agonists recruited a greater fraction of HCS cells to contract, resulting ingreater changes in cell area or length on average, but the maximalcapacity of shortening of individual cells was similar between thegroups. Unlike cells on glass, cells on HCS shortened to methacholine.HCS was reversible and persisted over several passages. Agonistsstimulated intracellular Ca2+ oscillations in cells on HCS,whereas they elicited biphasic peak and plateau transients in cells onglass. HCS modulates smooth muscle cell phenotype in vitro.

  相似文献   

8.
9.
Summary Smooth muscle cells (SMC) were cultured from atherosclerotic plaques and uninvolved arteries to determine if differences exist between growth characteristics or ultrastructure of the cultured cells. Eighteen aortic punch biopsies provided the uninvolved tissue, and 58 carotid plaques provided the atherosclerotic tissue. Eighty percent of the sample yielded viable cultured cells, which reached a maximum population doubling time during log phase growth of 72 h (seeding density=1.0×104 cells/cm2, 2nd passage). Growth characteristics of both normal and plaque-derived cells were the same in vitro. Growth rate declined with time in culture, and cell division ceased by the 5th or 6th passage. In culture, spindle shaped cells formed the “hill and valley” configuration typical of SMC. Plaquederived SMC were ultrastructurally similar to SMC from uninvolved vessel wall. Proliferative potential did not vary with age of sex, with method of culture, or with whether the cells were plaque derived or not. This study was supported in part by National Institutes of Health Grant HL-17269  相似文献   

10.
During mitosis, chromosome passenger complexes (CPCs) exhibit a well-conserved association with the anaphase spindle and have been implicated in spindle stability. However, their precise effect on the spindle is not clear. In this paper, we show, in budding yeast, that a CPC consisting of CBF3, Bir1, and Sli15, but not Ipl1, is required for normal spindle elongation. CPC mutants slow spindle elongation through the action of the bipolar kinesins Cin8 and Kip1. The same CPC mutants that slow spindle elongation also result in the enrichment of Cin8 and Kip1 at the spindle midzone. Together, these findings argue that CPCs function to organize the spindle midzone and potentially switch motors between force generators and molecular brakes. We also find that slowing spindle elongation delays the mitotic exit network (MEN)-dependent release of Cdc14, thus delaying spindle breakdown until a minimal spindle size is reached. We propose that these CPC- and MEN-dependent mechanisms are important for coordinating chromosome segregation with spindle breakdown and mitotic exit.  相似文献   

11.
The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.  相似文献   

12.
A combined study of light and electron microscopy and of immunolabelling of three pleomorphic spindle cell sarcomas is presented. The light and electron microscopic features of these sarcomas were most compatible with those described for malignant fibrous histiocytoma (MFH, pleomorphic-storiform subtype). Electronmicroscopically undifferentiated and fibroblast-like cells, fibrohistiocytes and multinucleated histiocytes were observed. Characteristics belonging to smooth muscle cells were absent. By immunostaining, vimentin and desmin could be observed in tumour cells of all three cases, at least on frozen sections. Other markers such as alpha 1-antichymotrypsin, S-100 proteins, laminin, collagen IV and markers specific for skeletal muscle cells (myoglobin, actin and myosin specific for skeletal muscle) could not be demonstrated. These findings indicate that three MFH's are, in fact, poorly differentiated variants of smooth muscle tumours. It is concluded that immunophenotyping is very useful for this type of neoplasm.  相似文献   

13.
In animals, the female meiotic spindle is positioned at the egg cortex in a perpendicular orientation to facilitate the disposal of half of the chromosomes into a polar body. In Caenorhabditis elegans, the metaphase spindle lies parallel to the cortex, dynein is dispersed on the spindle, and the dynein activators ASPM-1 and LIN-5 are concentrated at spindle poles. Anaphase-promoting complex (APC) activation results in dynein accumulation at spindle poles and dynein-dependent rotation of one spindle pole to the cortex, resulting in perpendicular orientation. To test whether the APC initiates spindle rotation through cyclin B-CDK-1 inactivation, separase activation, or degradation of an unknown dynein inhibitor, CDK-1 was inhibited with purvalanol A in metaphase-I-arrested, APC-depleted embryos. CDK-1 inhibition resulted in the accumulation of dynein at spindle poles and dynein-dependent spindle rotation without chromosome separation. These results suggest that CDK-1 blocks rotation by inhibiting dynein association with microtubules and with LIN-5-ASPM-1 at meiotic spindle poles and that the APC promotes spindle rotation by inhibiting CDK-1.  相似文献   

14.
Micromanipulation studies of the mitotic apparatus in sand dollar eggs   总被引:9,自引:0,他引:9  
Mechanical properties of the mitotic spindle and the effects of various operations of the mitotic apparatus on the chromosome movement and spindle elongation were investigated in fertilized eggs and blastomeres of the sand dollar, Clypeaster japonicus. On the basis of results with mechanical stretching and compression of the spindle with a pair of microneedles and the behavior of an oil drop microinjected into the spindle, it was concluded that the equatorial region of the spindle is mechanically weaker than the half-spindle region. Anaphase chromosome movement occurred in the spindle from which an aster had been removed or separated with its polar end and in the spindle in which the interzonal region had been removed. This fact indicates that chromosomes move poleward in anaphase by forces generated near the kinetochores in the half-spindle. Because of the effects of separation or removal of an aster from the spindle on the spindle elongation in anaphase and the behavior of the aster, it was concluded that the spindle elongation in anaphase is caused by pulling forces generated by asters attached to the ends of the spindle.  相似文献   

15.
《The Journal of cell biology》1995,129(5):1287-1300
We analyzed the role that chromosomes, kinetochores, and centrosomes play in spindle assembly in living grasshopper spermatocytes by reconstructing spindles lacking certain components. We used video- enhanced, polarization microscopy to distinguish the effect of each component on spindle microtubule dynamics and we discovered that both chromosomes and centrosomes make potent and very different contributions to the organization of the spindle. Remarkably, the position of a single chromosome can markedly affect the distribution of microtubules within a spindle or even alter the fate of spindle assembly. In an experimentally constructed spindle having only one chromosome, moving the chromosome to one of the two poles induces a dramatic assembly of microtubules at the nearer pole and a concomitant disassembly at the farther pole. So long as a spindle carries a single chromosome it will persist normally. A spindle will also persist even when all chromosomes are detached and then removed from the cell. If, however, a single chromosome remains in the cell but is detached from the spindle and kept in the cytoplasm, the spindle disassembles. One might expect the effect of chromosomes on spindle assembly to relate to a property of a specific site on each chromosome, perhaps the kinetochore. We have ruled out that possibility by showing that it is the size of chromosomes rather than the number of kinetochores that matters. Although chromosomes affect spindle assembly, they cannot organize a spindle in the absence of centrosomes. In contrast, centrosomes can organize a functional bipolar spindle in the absence of chromosomes. If both centrosomes and chromosomes are removed from the cell, the spindle quickly disappears.  相似文献   

16.
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.  相似文献   

17.
In eukaryotic cells, proper position of the mitotic spindle is necessary for successful cell division and development. We explored the nature of forces governing the positioning and elongation of the mitotic spindle in Schizosaccharomyces pombe. We hypothesized that astral microtubules exert mechanical force on the S. pombe spindle and thus help align the spindle with the major axis of the cell. Microtubules were tagged with green fluorescent protein (GFP) and visualized by two-photon microscopy. Forces were inferred both from time-lapse imaging of mitotic cells and, more directly, from mechanical perturbations induced by laser dissection of the spindle and astral microtubules. We found that astral microtubules push on the spindle poles in S. pombe, in contrast to the pulling forces observed in a number of other cell types. Further, laser dissection of the spindle midzone induced spindle collapse inward. This offers direct evidence in support of the hypothesis that spindle elongation is driven by the sliding apart of antiparallel microtubules in the spindle midzone. Broken spindles recovered and mitosis completed as usual. We propose a model of spindle centering and elongation by microtubule-based pushing forces.  相似文献   

18.
The mitotic spindle contains the machinery responsible for sister chromatid segregation. It is composed of a complex and dynamic array of microtubules, which are nucleated from the spindle poles. Studies of yeast spindle functions by molecular genetic analysis and by in vitro functional analysis have identified proteins that are mitosis-specific and present at very low concentrations in the cell, and have revealed the molecular bases of several processes required for the formation and functioning of the mitotic spindle. Here I review the current knowledge of the processes that are common to most eukaryotes: microtubule nucleation at the spindle poles, bipolar spindle assembly, maintenance of the spindle structure, chromosome attachment to the spindle and chromosome separation on the spindle.  相似文献   

19.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

20.
The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号