首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Magnaporthe grisea, a well-conserved mitogen-activated protein (MAP) kinase gene, PMK1, is essential for fungal pathogenesis. In this study, we tested whether the same MAP kinase is essential for plant infection in the gray mold fungus Botrytis cinerea, a necrotrophic pathogen that employs infection mechanisms different from those of M. grisea. We used a polymerase chain reaction-based approach to isolate MAP kinase homologues from B. cinerea. The Botrytis MAP kinase required for pathogenesis (BMP) MAP kinase gene is highly homologous to the M. grisea PMK1. BMP1 is a single-copy gene. bmp1 gene replacement mutants produced normal conidia and mycelia but were reduced in growth rate on nutrient-rich medium. bmp1 mutants were nonpathogenic on carnation flowers and tomato leaves. Re-introduction of the wild-type BMP1 allele into the bmp1 mutant restored both normal growth rate and pathogenicity. Further studies indicated that conidia from bmp1 mutants germinated on plant surfaces but failed to penetrate and macerate plant tissues. bmp1 mutants also appeared to be defective in infecting through wounds. These results indicated that BMP1 is essential for plant infection in B. cinerea, and this MAP kinase pathway may be widely conserved in pathogenic fungi for regulating infection processes.  相似文献   

2.
Loss of a stearoyl-ACP desaturase activity in the Arabidopsis thaliana ssi2 mutant confers susceptibility to the necrotroph, Botrytis cinerea. In contrast, the ssi2 mutant exhibits enhanced resistance to Pseudomonas syringae, Peronospora parasitica, and Cucumber mosaic virus. The altered basal resistance to these pathogens in the ssi2 mutant plant is accompanied by the constitutive accumulation of elevated salicylic acid (SA) level and expression of the pathogenesis-related 1 (PR1) gene, the inability of jasmonic acid (JA) to activate expression of the defensin gene, PDF1.2, and the spontaneous death of cells. Here, we show that presence of the eds5 and pad4 mutant alleles compromises the ssi2-conferred resistance to Pseudomonas syringae pv. maculicola. In contrast, resistance to B. cinerea was restored in the ssi2 eds5 and ssi2 pad4 double-mutant plants. However, resistance to B. cinerea was not accompanied by the restoration of JA responsiveness in the ssi2 eds5 and ssi2 pad4 plants. The ssi2 eds5 and ssi2 pad4 plants retain the ssi2-conferred spontaneous cell death phenotype, suggesting that cell death is not a major factor that predisposes the ssi2 mutant to infection by B. cinerea. Furthermore, the high SA content of the ssi2 pad4 plant, combined with our previous observation that the SA-deficient ssi2 nahG plant succumbs to infection by B. cinerea, suggests that elevated SA level does not have a causal role in the ssi2-conferred susceptibility to B. cinerea. Our results suggest that interaction between an SSI2-dependent factor or factors and an EDS5- and PAD4-dependent mechanism or mechanisms modulates defense to B. cinerea.  相似文献   

3.
Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.  相似文献   

4.
We identified a nonpathogenic strain of Ustilago maydis by tagging mutagenesis. The affected gene, glucosidase1 (gas1), displays similarity to catalytic alpha-subunits of endoplasmic reticulum (ER) glucosidase II. We have shown that Gas1 localizes to the ER and complements the temperature-sensitive phenotype of a Saccharomyces cerevisiae mutant lacking ER glucosidase II. gas1 deletion mutants were normal in growth and mating but were more sensitive to calcofluor and tunicamycin. Mutant infection hyphae displayed significant alterations in the distribution of cell wall material and were able to form appressoria and penetrate the plant surface but arrested growth in the epidermal cell layer. Electron microscopy analysis revealed that the plant-fungal interface between mutant hyphae and the plant plasma membrane was altered compared with the interface of penetrating wild-type hyphae. This may indicate that gas1 mutants provoke a plant response.  相似文献   

5.
In the gray mold fungus Botrytis cinerea, spore germination and plant infection are stimulated in the presence of nutrients, in particular sugars. Applied at micromolar concentrations, fructose is a more potent inducer of germination than glucose. To test whether preferred fructose uptake is responsible for this effect, and to study the mechanism of fructose transport in B. cinerea, a gene (frt1) encoding a fructose transporter was cloned. FRT1 is highly similar to recently identified fructose transporters of yeasts, but much less to other fungal hexose transporters characterized so far. By using a hexose uptake deficient yeast strain for expression, FRT1 was found to be a high affinity proton coupled symporter specific for fructose but not for glucose. B. cinerea frt1 disruption mutants were created and showed normal vegetative growth and plant infection, but a delay in fructose-induced germination when compared to wild-type. Sugar uptake experiments with both wild-type and mutant conidia showed a higher affinity for glucose than for fructose. Thus, we propose that the specific effect of fructose on germination is not due to transport but rather to an as yet unknown intracellular sensing.  相似文献   

6.
Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene, inhibitors of ethylene perception, or salicylate; (b) quantitative disease assays with mutants or transgenes affected in the production of or the response to either ethylene or jasmonate; and (c) expression analysis of defense-related genes before and after inoculation of plants with B. cinerea. Plants pretreated with ethylene showed a decreased susceptibility toward B. cinerea, whereas pretreatment with 1-methylcyclopropene, an inhibitor of ethylene perception, resulted in increased susceptibility. Ethylene pretreatment induced expression of several pathogenesis-related protein genes before B. cinerea infection. Proteinase inhibitor I expression was repressed by ethylene and induced by 1-methylcyclopropene. Ethylene also induced resistance in the mutant Never ripe. RNA analysis showed that Never ripe retained some ethylene sensitivity. The mutant Epinastic, constitutively activated in a subset of ethylene responses, and a transgenic line producing negligible ethylene were also tested. The results confirmed that ethylene responses are important for resistance of tomato to B. cinerea. The mutant Defenseless, impaired in jasmonate biosynthesis, showed increased susceptibility to B. cinerea. A transgenic line with reduced prosystemin expression showed similar susceptibility as Defenseless, whereas a prosystemin-overexpressing transgene was highly resistant. Ethylene and wound signaling acted independently on resistance. Salicylate and ethylene acted synergistically on defense gene expression, but antagonistically on resistance.  相似文献   

7.
The grapevine (Vitis) secondary metabolite resveratrol is considered a phytoalexin, which protects the plant from Botrytis cinerea infection. Laccase activity displayed by the fungus is assumed to detoxify resveratrol and to facilitate colonization of grape. We initiated a functional molecular genetic analysis of B. cinerea laccases by characterizing laccase genes and evaluating the phenotype of targeted gene replacement mutants. Two different laccase genes from B. cinerea were characterized, Bclcc1 and Bclcc2. Only Bclcc2 was strongly expressed in liquid cultures in the presence of either resveratrol or tannins. This suggested that Bclcc2, but not Bclcc1, plays an active role in the oxidation of both resveratrol and tannins. Gene replacement mutants in the Bclcc1 and Bclcc2 gene were made to perform a functional analysis. Only Bclcc2 replacement mutants were incapable of converting both resveratrol and tannins. When grown on resveratrol, both the wild type and the Bclcc1 replacement mutant showed inhibited growth, whereas Bclcc2 replacement mutants were unaffected. Thus, contrary to the current theory, BcLCC2 does not detoxify resveratrol but, rather, converts it into compounds that are more toxic for the fungus itself. The Bclcc2 gene was expressed during infection of B. cinerea on a resveratrol-producing host plant, but Bclcc2 replacement mutants were as virulent as the wild-type strain on various hosts. The activation of a plant secondary metabolite by a pathogen introduces a new dimension to plant-pathogen interactions and the phytoalexin concept.  相似文献   

8.
9.
Salicylic acid (SA) is an important regulator of plant defense responses, and a variety of Arabidopsis mutants impaired in resistance against bacterial and fungal pathogens show defects in SA accumulation, perception, or signal transduction. Nevertheless, the role of SA-dependent defense responses against necrotrophic fungi is currently unclear. We determined the susceptibility of a set of previously identified Arabidopsis mutants impaired in defense responses to the necrotrophic fungal pathogen Botrytis cinerea. The rate of development of B. cinerea disease symptoms on primary infected leaves was affected by responses mediated by the genes EIN2, JAR1, EDS4, PAD2, and PAD3, but was largely independent of EDS5, SID2/ICS1, and PAD4. Furthermore, plants expressing a nahG transgene or treated with a phenylalanine ammonia lyase (PAL) inhibitor showed enhanced symptoms, suggesting that SA synthesized via PAL, and not via isochorismate synthase (ICS), mediates lesion development. In addition, the degree of lesion development did not correlate with defensin or PR1 expression, although it was partially dependent upon camalexin accumulation. Although npr1 mutant leaves were normally susceptible to B. cinerea infection, a double ein2 npr1 mutant was significantly more susceptible than ein2 plants, and exogenous application of SA decreased B. cinerea lesion size through an NPR1-dependent mechanism that could be mimicked by the cpr1 mutation. These data indicate that local resistance to B. cinerea requires ethylene-, jasmonate-, and SA-mediated signaling, that the SA affecting this resistance does not require ICS1 and is likely synthesized via PAL, and that camalexin limits lesion development.  相似文献   

10.
Tang D  Simonich MT  Innes RW 《Plant physiology》2007,144(2):1093-1103
We identified an Arabidopsis (Arabidopsis thaliana) mutant, sma4 (symptoms to multiple avr genotypes4), that displays severe disease symptoms when inoculated with avirulent strains of Pseudomonas syringae pv tomato, although bacterial growth is only moderately enhanced compared to wild-type plants. The sma4 mutant showed a normal susceptible phenotype to the biotrophic fungal pathogen Erysiphe cichoracearum. Significantly, the sma4 mutant was highly resistant to a necrotrophic fungal pathogen, Botrytis cinerea. Germination of B. cinerea spores on sma4 mutant leaves was inhibited, and penetration by those that did germinate was rare. The sma4 mutant also showed several pleiotropic phenotypes, including increased sensitivity to lower humidity and salt stress. Isolation of SMA4 by positional cloning revealed that it encodes LACS2, a member of the long-chain acyl-CoA synthetases. LACS2 has previously been shown to be involved in cutin biosynthesis. We therefore tested three additional cutin-defective mutants for resistance to B. cinerea: att1 (for aberrant induction of type three genes), bodyguard, and lacerata. All three displayed an enhanced resistance to B. cinerea. Our results indicate that plant cutin or cuticle structure may play a crucial role in tolerance to biotic and abiotic stress and in the pathogenesis of B. cinerea.  相似文献   

11.
12.
灰葡萄孢分生孢子产生相关基因的克隆及功能分析   总被引:3,自引:0,他引:3  
[目的]克隆灰葡萄孢分生孢子产生相关基因,并研究其功能,为进一步研究灰葡萄孢分生孢子产生机理和灰葡萄孢侵染及致病机理奠定基础.[方法]通过筛选灰葡萄孢ATMT突变体库,获得一株不能产生分生孢子的突变菌株BCt78,采用PCR和Southern Blotting技术,对突变菌株BCt78进行分子鉴定.利用TAIL-PCR技术获得T-DNA插入位点的侧翼序列;将所获得侧翼序列与灰葡萄孢基因组数据库中的已知基因序列进行BLAST分析,推测出T-DNA的插入位点;通过PCR进一步验证T-DNA的插入位点,利用RT-PCR技术确定突变基因;最后对突变菌株的菌落形态、生长速度、胞壁降解酶活力、粗毒素的生物活性、对番茄叶片的致病能力及部分致病相关基因的表达情况进行研究.[结果]TAIL-PCR结果证实T-DNA插入到灰葡萄孢BCIG 12707.1基因的ATG起始密码子区;RT-PCR结果证实突变基因为BCIG_12707.1,该基因DNA全长为135 bp,编码一个44个氨基酸的假定蛋白(Hypothetical protein).突变菌株在PDA培养基上菌落呈灰白色,生长速度减慢,不能产生分生孢子及菌核;对番茄叶片的致病性增强,且胞壁降解酶(PG、PMG和Cx)活力增强;突变菌株中参与细胞壁降解的角质酶基因cutA和多聚半乳糖醛酸酶基因Bepg1,信号转导途径基因(PKA1、PKA2、Bac、Bmp3),产毒素基因BcBOT2(Sesquiterpene synthase),漆酶基因Lac1,跨膜蛋白基因Btp1表达都增强.[结论]BC1G_ 12707.1基因在灰葡萄孢分生孢子产生、菌核形成及致病力等方面起重要作用.  相似文献   

13.
Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea   总被引:1,自引:0,他引:1  
Botrytis cinerea, a model necrotrophic fungal pathogen that causes gray mold as it infects different organs on more than 200 plant species, is a significant contributor to postharvest rot in fresh fruit and vegetables, including tomatoes. By describing host and pathogen proteomes simultaneously in infected tissues, the plant proteins that provide resistance and allow susceptibility and the pathogen proteins that promote colonization and facilitate quiescence can be identified. This study characterizes fruit and fungal proteins solubilized in the B. cinerea-tomato interaction using shotgun proteomics. Mature green, red ripe wild type and ripening inhibited (rin) mutant tomato fruit were infected with B. cinerea B05.10, and the fruit and fungal proteomes were identified concurrently 3 days postinfection. One hundred eighty-six tomato proteins were identified in common among red ripe and red ripe-equivalent ripening inhibited (rin) mutant tomato fruit infected by B. cinerea. However, the limited infections by B. cinerea of mature green wild type fruit resulted in 25 and 33% fewer defense-related tomato proteins than in red and rin fruit, respectively. In contrast, the ripening stage of genotype of the fruit infected did not affect the secreted proteomes of B. cinerea. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their role in plant-pathogen interactions.  相似文献   

14.
* Botrytis cinerea is a necrotrophic fungus that causes grey mould on a wide range of food plants, especially grapevine, tomato, soft fruits and vegetables. This disease brings about important economic losses in both pre- and postharvest crops. Successful protection of host plants against this pathogen is severely hampered by a lack of resistance genes in the hosts and the considerable phenotypic diversity of the fungus. * The aim of this study was to test whether B. cinerea manipulates the immunity-signalling pathways in plants to restore its disease. * We showed that B. cinerea caused disease in Nicotiana benthamiana through the activation of two plant signalling genes, EDS1 and SGT1, which have been shown to be essential for resistance against biotrophic pathogens; and more interestingly, virus-induced gene silencing of these two plant signalling components enhanced N. benthamiana resistance to B. cinerea. Finally, plants expressing the baculovirus antiapoptotic protein p35 were more resistant to this necrotrophic pathogen than wild-type plants. * This work highlights a new strategy used by B. cinerea to establish disease. This information is important for the design of strategies to improve plant pathogen resistance.  相似文献   

15.
植物激素茉莉素作为抗性信号调控植物对腐生性病原菌和昆虫的抗性, 作为发育信号调控植物根的生长、雄蕊发育、表皮毛形成和叶片衰老。茉莉素受体COI1识别茉莉素分子, 进而与JAZ蛋白互作并诱导其降解, 继而调控多种茉莉素反应。拟南芥(Arabidopsis thaliana) IIId亚组bHLH转录因子(bHLH3、bHLH13、bHLH14和bHLH17)是JAZ的一类靶蛋白。与野生型相比, IIId亚组bHLH转录因子的单突变体对灰霉菌和甜菜夜蛾的抗性无明显差异, 而四突变体对灰霉菌和甜菜夜蛾的抗性增强。该文通过高表达bHLH17并研究其对灰霉菌和甜菜夜蛾的抗性反应, 结果显示, 被灰霉菌侵染的bHLH17高表达植株较野生型表现出更严重的病症。取食bHLH17高表达植株叶片的甜菜夜蛾幼虫体重大于取食野生型叶片的幼虫体重。bHLH17高表达抑制了茉莉素诱导的抗性相关基因(Thi2.1)和伤害响应基因(VSP2、AOS、JAZ1、JAZ9和JAZ10)的表达。原生质体转化实验显示bHLH17通过其N端行使转录抑制功能。研究结果表明, IIId亚组bHLH转录抑制因子bHLH17高表达会负调控茉莉素介导的对灰霉菌和甜菜夜蛾的抗性。  相似文献   

16.
The pectinolytic enzyme pectin methylesterase (PME) hydrolyses pectin in methanol and polygalacturonic acid. In the expressed sequence tag library of Botrytis cinerea T4, we identified a 1,041 bp Bcpme1 cDNA potentially encoding a 346-amino acid protein of 37 kDa showing 46.8% identity with Aspergillus sp. PMEs. Bcpme1 is a single copy gene and is similarly expressed in glucose and pectin containing media. To evaluate the role of Bcpme1 in Botrytis cinerea virulence, a mutant in Bcpme1 was generated by gene disruption. The Bcpme1 mutant showed similar growth on rich medium but reduced growth on pectin medium. Two isozymes of pI 7.4 and 7.1 were detected in pectin liquid-culture supernatants of wild-type strain Bd90 analyzed by isoelectric focusing-polyacrylamide gel electrophoresis, while those of Bcpme1 mutant possessed only the pI 7.1 isozyme. BCPME1, the pI 7.4 isozyme, is the major PME activity, as PME activity is 75% reduced in Bcpme1 mutant. Moreover, the Bcpme1 mutant was less virulent on apple fruits, grapevine, and Arabidopsis thaliana leaves. Those phenotypes were complemented by reintroducing a Bcpme1 copy in the Bcpme1 mutant. These results showed that B. cinerea possessed more than one PME-encoding gene and that BCPME1 is an important determinant of B. cinerea virulence.  相似文献   

17.
BACKGROUND: Plants have evolved efficient mechanisms to combat pathogen attack. One of the earliest responses to attempted pathogen attack is the generation of oxidative burst that can trigger hypersensitive cell death. This is called the hypersensitive response (HR) and is considered to be a major element of plant disease resistance. The HR is thought to deprive the pathogens of a supply of food and confine them to initial infection site. Necrotrophic pathogens, such as the fungi Botrytis cinerea and Sclerotinia sclerotiorum, however, can utilize dead tissue. RESULTS: Inoculation of B. cinerea induced an oxidative burst and hypersensitive cell death in Arabidopsis. The degree of B. cinerea and S. sclerotiorum pathogenicity was directly dependent on the level of generation and accumulation of superoxide or hydrogen peroxide. Plant cells exhibited markers of HR death, such as nuclear condensation and induction of the HR-specific gene HSR203J. Growth of B. cinerea was suppressed in the HR-deficient mutant dnd1, and enhanced by HR caused by simultaneous infection with an avirulent strain of the bacterium Pseudomonas syringae. HR had an opposite (inhibitory) effect on a virulent (biotrophic) strain of P. syringae. Moreover, H(2)O(2) levels during HR correlated positively with B. cinerea growth but negatively with growth of virulent P. syringae. CONCLUSIONS: We show that, although hypersensitive cell death is efficient against biotrophic pathogens, it does not protect plants against infection by the necrotrophic pathogens B. cinerea and S. sclerotiorum. By contrast, B. cinerea triggers HR, which facilitates its colonization of plants. Hence, these fungi can exploit a host defense mechanism for their pathogenicity.  相似文献   

18.
Little is known about the effect of the host on the genetic stability of bacterial plant pathogens. Crown gall, a plant disease caused by Agrobacterium tumefaciens, may represent a useful model to study this effect. Indeed, our previous observations on the natural occurrence and origin of nonpathogenic agrobacteria suggest that the host plant might induce loss of pathogenicity in populations of A. tumefaciens. Here we report that five different A. tumefaciens strains initially isolated from apple tumors produced up to 99% nonpathogenic mutants following their reintroduction into axenic apple plants. Two of these five strains were also found to produce mutants on pear and/or blackberry plants. Generally, the mutants of the apple isolate D10B/87 were altered in the tumor-inducing plasmid, harboring either deletions in this plasmid or point mutations in the regulatory virulence gene virG. Most of the mutants originating from the same tumor appeared to be of clonal origin, implying that the host plants influenced agrobacterial populations by favoring growth of nonpathogenic mutants over that of wild-type cells. This hypothesis was confirmed by coinoculation of apple rootstocks with strain D10B/87 and a nonpathogenic mutant.  相似文献   

19.
Bcmfs1, a novel major facilitator superfamily gene from Botrytis cinerea, was cloned, and replacement and overexpression mutants were constructed to study its function. Replacement mutants showed increased sensitivity to the natural toxic compounds camptothecin and cercosporin, produced by the plant Camptotheca acuminata and the plant pathogenic fungus Cercospora kikuchii, respectively. Overexpression mutants displayed decreased sensitivity to these compounds and to structurally unrelated fungicides, such as sterol demethylation inhibitors (DMIs). A double-replacement mutant of Bcmfs1 and the ATP-binding cassette (ABC) transporter gene BcatrD was more sensitive to DMI fungicides than a single-replacement mutant of BcatrD, known to encode an important ABC transporter of DMIs. The sensitivity of the wild-type strain and mutants to DMI fungicides correlated with Bcmfs1 expression levels and with the initial accumulation of oxpoconazole by germlings of these isolates. The results indicate that Bcmfs1 is a major facilitator superfamily multidrug transporter involved in protection against natural toxins and fungicides and has a substrate specificity that overlaps with the ABC transporter BcatrD. Bcmfs1 may be involved in protection of B. cinerea against plant defense compounds during the pathogenic phase of growth on host plants and against fungitoxic antimicrobial metabolites during its saprophytic phase of growth.  相似文献   

20.
Since volatile allo-ocimene enhances resistance of Arabidopsis thaliana against Botrytis cinerea, we attempted to dissect the factors involved in this induced resistance. The penetration of B. cinerea hyphae into Arabidopsis epidermis and the growth of hyphae after penetration were suppressed on allo-ocimene-treated leaves. allo-Ocimene also induced lignification on cell walls and veins of the leaves. The treatment induced accumulation of antifungal substances including the Arabidopsis phytoalexin, camalexin. Induction of lignification and accumulation of camalexin elicited by B. cinerea infection on Arabidopsis leaves after treating with allo-ocimene was faster and more intense than that observed with the leaves that had not been treated with this volatile. This suggested that allo-ocimene could prime defensive responses in Arabidopsis. allo-Ocimene enhanced resistance against B. cinerea in an ethylene resistant mutant (etr1-1), a jasmonic acid resistant mutant (jar1-1) and a salicylic acid resistant mutant (npr1-1). Thus, it is suggested that a signaling pathway independent for ETR1, JAR1 and NPR1 was operative to induce the resistance. The series of responses observed after allo-ocimene-treatment was mostly similar to that observed after C6-aldehyde-treatment. The effect of C6-aldehyde-treatment has been largely accounted to the chemical reactivities of the compounds; however, from this result it can be suggested that resistance responses of Arabidopsis could be induced by the volatiles mostly independent on their reactivities and that a common signaling pathway unaffected by the reactivities of compound was activated by the volatiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号