首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histone variants play important roles in the maintenance and regulation of the chromatin structure. In order to characterize the biochemical properties of the chromatin structure containing histone variants, we investigated the dynamic status of nucleosome core particles (NCPs) that were assembled with recombinant histones. We found that in the presence of nucleosome assembly protein I (NAP-I), a histone chaperone, H2A-Barr body deficient (H2A.Bbd) confers the most flexible nucleosome structure among the mammalian histone H2A variants known thus far. NAP-I mediated the efficient assembly and disassembly of the H2A.Bbd-H2B dimers from NCPs. This reaction was accomplished more efficiently when the NCPs contained H3.3, a histone H3 variant known to be localized in the active chromatin, than when the NCPs contained the canonical H3. These observations indicate that the histone variants H2A.Bbd and H3.3 are involved in the formation and maintenance of the active chromatin structure. We also observed that acidic histone binding proteins, TAF-I/SET and B23.1, demonstrated dimer assembly and disassembly activity, but the efficiency of their activity was considerably lower than that of NAP-I. Thus, both the acidic nature of NAP-I and its other functional structure(s) may be essential to mediate the assembly and disassembly of the dimers in NCPs.  相似文献   

2.
Certain proteins can undergo polyglycylation and polyglutamylation. Polyglutamylases (glutamate ligases) have recently been identified in a family of tubulin tyrosine ligase-like (TTLL) proteins. However, no polyglycylase (glycine ligase) has yet been reported. Here we identify a polyglycylase in the TTLL proteins by using an anti-poly-glycine antibody. The antibody reacted with a cytoplasmic 60-kDa protein that accumulated in elongating spermatids. Using tandem mass spectrometry of trypsinized samples, immunoprecipitated by the antibody from the TTLL10-expressing cells, we identified the 60-kDa protein as nucleosome assembly protein 1 (NAP1). Recombinant TTLL10 incorporated glycine into recombinant NAP1 in vitro. Mutational analyses indicated that Glu residues at 359 and 360 in the C-terminal part of NAP1 are putative sites for the modification. Thus, TTLL10 is a polyglycylase for NAP1.  相似文献   

3.
A nucleosome assembly protein (AP-I) was purified approximately 50% from the cytosol of HeLa S3 cells by three purification steps. Using this protein fraction as an antigen, we established three stable hybridomas that secrete monoclonal antibodies specific for AP-I by the conventional method of cell fusion. Immunoblotting of the HeLa S3 cytosol, proved AP-I exists as a 58-kDa peptide in vivo, not as the 53-kDa peptide previously identified as active in nucleosome assembly (Ishimi, Y., et al., Eur. J. Biochem., 142, 431-439, 1984). An immunocytochemical study using the monoclonal antibody with the highest specificity against AP-I pin pointed the intranuclear localization of AP-I in HeLa S3 cells.  相似文献   

4.
A nucleosome assembly protein (NAP-1) of Saccharomyces cerevisiae facilitates the association of histones with DNA to form nucleosomes in vitro at physiological ionic conditions. The cloned gene was expressed in Escherichia coli using a T7 expression system, and the protein (417 amino acid residues) was purified by Mono Q column chromatography. Various deletion fragments of NAP-1 protein were also produced, and their nucleosome assembly activity was examined by supercoiling assay. The internal fragment containing the residues 43-365 was necessary and sufficient for the activity, and a long stretch of negatively charged region near the carboxyl terminus was dispensable. This minimal size fragment could form the 12 S NAP-1-histone complex as the whole protein could, whereas deleted fragments on either side could bind with core histones only to form aggregates.  相似文献   

5.
6.
NAP-1, a protein first isolated from mammalian cells, can introduce supercoils into relaxed circular DNA in the presence of purified core histones. Based on its in vitro activity, it has been suggested that NAP-1 may be involved in nucleosome assembly in vivo. We isolated a cDNA clone encoding a soybean NAP-1 homolog, SNAP-1. The SNAP-1 cDNA contains an open reading frame of 358 amino acid residues with a calculated molecular weight of 41 kDa. The deduced amino acid sequence of SNAP-1 shares sequence similarity with yeast NAP-1 (38%) and human hNRP (32%). Notable features of the deduced sequence are two extended acidic regions thought to be involved in histone binding. SNAP-1 expressed in Escherichia coli induces supercoiling in relaxed circular DNA, suggesting that SNAP-1 may have nucleosome assembly activity. The specific activity of SNAP-1 is comparable to that of HeLa NAP-1 in an in vitro assay. Western analysis reveals that SNAP-1 is expressed in the immature and young tissues that were examined, while mature tissues such as old leaves and roots, show very little or no expression. NAP-1 homologs also appear to be present in other plant species.  相似文献   

7.
8.
The complete sequence coding for the 57-kDa major soluble antigen of the salmonid fish pathogen, Renibacterium salmoninarum, was determined. The gene contained an opening reading frame of 1671 nucleotides coding for a protein of 557 amino acids with a calculated M(r) value of 57,190. The first 26 amino acids constituted a signal peptide. The deduced sequence for amino acid residues 27-61 was in agreement with the 35 N-terminal amino acid residues determined by microsequencing, suggesting the protein is synthesized as a 557-amino acid precursor and processed to produce a mature protein of M(r) 54,505. Two regions of the protein contained imperfect direct repeats. The first region contained two copies of an 81-residue repeat, the second contained five copies of an unrelated 25-residue repeat. Also, a perfect inverted repeat (including three in-frame UAA stop codons) was observed at the carboxyl-terminus of the gene.  相似文献   

9.
Abstract The complete sequence coding for the 57-kDa major soluble antigen of the salmonid fish pathogen, Renibacterium salmoninarum , was determined. The gene contained an opening reading frame of 1671 nucleotides coding for a protein of 557 amino acids with a calculated M r value of 57190. The first 26 amino acids constituted a signal peptide. The deduced sequence for amino acid residues 27–61 was in agreement with the 35 N-terminal amino acid residues determined by microsequencing, suggesting the protein in synthesized as a 557-amino acid precursor and processed to produce a mature protein of M r 54505. Two regions of the protein contained imperfect direct repeats. The first region contained two copies of an 81-residue repeat, the second contained five copies of an unrelated 25-residue repeat. Also, a perfect inverted repeat (including three in-frame UAA stop codons) was observed at the carboxyl-terminus of the gene.  相似文献   

10.
11.
Using the vector pGEM-4-blue, a 4,251-base-pair DNA fragment containing the gene for the surface (S)-layer protein of Bacillus sphaericus 2362 was cloned into Escherichia coli. Determination of the nucleotide sequence indicated an open reading frame (ORF) coding for a protein of 1,176 amino acids with a molecular size of 125 kilodaltons (kDa). A protein of this size which reacted with antibody to the 122-kDa S-layer protein of B. sphaericus was detected in cells of E. coli containing the recombinant plasmid. Analysis of the deduced amino acid sequence indicated a highly hydrophobic N-terminal region which had the characteristics of a leader peptide. The first amino acid of the N-terminal sequence of the 122-kDa S-layer protein followed the predicted cleavage site of the leader peptide in the 125-kDa protein. A sequence characteristic of promoters expressed during vegetative growth was found within a 177-base-pair region upstream from the ORF coding for the 125-kDa protein. This putative promoter may account for the expression of this gene during the vegetative growth of B. sphaericus and E. coli. The gene for the 125-kDa protein was followed by an inverted repeat characteristic of terminators. Downstream from this gene (11.2 kilobases) was an ORF coding for a putative 80-kDa protein having a high sequence similarity to the 125-kDa protein. Evidence was presented indicating that this gene is cryptic.  相似文献   

12.
13.
Isolation and oncogenic potential of a novel human src-like gene.   总被引:37,自引:13,他引:24       下载免费PDF全文
We have isolated cDNA molecules representing the complete coding sequence of a new human gene which is a member of the src family of oncogenes. Nucleotide sequence analysis revealed that this gene, termed slk, encoded a 537-residue protein which was 86% identical to the chicken proto-oncogene product, p60c-src, over a stretch of 191 amino acids at its carboxy terminus. In contrast, only 6% amino acid homology was observed within the amino-terminal 82 amino acid residues of these two proteins. It was possible to activate slk as a transforming gene by substituting approximately two-thirds of the slk coding sequence for an analogous region of the v-fgr onc gene present in Gardner-Rasheed feline sarcoma virus. The resulting hybrid protein molecule expressed in transformed cells demonstrated protein kinase activity with specificity for tyrosine residues.  相似文献   

14.
A genomic clone encoding the protease (Pr) and the assembly protein (AP) of Kaposi's sarcoma-associated herpesvirus (KSHV) (also called human herpesvirus 8) has been isolated and sequenced. As with other herpesviruses, the Pr and AP coding regions are present within a single long open reading frame. The mature KSHV Pr and AP polypeptides are predicted to contain 230 and 283 residues, respectively. The amino acid sequence of KSHV Pr has 56% identity with that of herpesvirus salmiri, the most similar virus by phylogenetic comparison. Pr is expressed in infected human cells as a late viral gene product, as suggested by RNA analysis of KSHV-infected BCBL-1 cells. Expression of the Pr domain in Escherichia coli yields an enzymatically active species, as determined by cleavage of synthetic peptide substrates, while an active-site mutant of this same domain yields minimal proteolytic activity. Sequence comparisons with human cytomegalovirus (HCMV) Pr permitted the identification of the catalytic residues, Ser114, His46, and His134, based on the known structure of the HCMV enzyme. The amino acid sequences of the release site of KSHV Pr (Tyr-Leu-Lys-Ala*Ser-Leu-Ile-Pro) and the maturation site (Arg-Leu-Glu-Ala*Ser-Ser-Arg-Ser) show that the extended substrate binding pocket differs from that of other members of the family. The conservation of amino acids known to be involved in the dimer interface region of HCMV Pr suggests that KSHV Pr assembles in a similar fashion. These features of the viral protease provide opportunities to develop specific inhibitors of its enzymatic activity.  相似文献   

15.
We previously identified a 20KDa membrane glycoprotein 1F5 antigen which inhibits the assembly of homologous complement membrane attack complexes and we designate it as HRF20 standing for 20KDa homologous restriction factor. The amino acid sequence deduced from its coding base sequence resembles that of T cell activating protein, most conspicuously in cysteine residues, 10 out of 11 of which occupy identical positions in an overall sequence homology of 24.8%. Furthermore, proliferation of human T cells was stimulated by monoclonal antibody to HRF20.  相似文献   

16.
The influence of reversible protein phosphorylation on nucleosome assembly during DNA replication was analyzed in extracts from human cells. Inhibitor studies and add-back experiments indicated requirements of cyclin A/Cdk2, cyclin E/Cdk2, and protein phosphatase type 1 (PP1) activities for nucleosome assembly during DNA synthesis by chromatin assembly factor 1 (CAF-1). The p60 subunit of CAF-1 is a molecular target for reversible phosphorylation by cyclin/Cdk complexes and PP1 during nucleosome assembly and DNA synthesis in vitro. Purified p60 can be directly phosphorylated by purified cyclin A/Cdk2, cyclin E/Cdk2, and cyclin B1/Cdk1, but not by cyclin D/Cdk4 complexes in vitro. Cyclin B1/Cdk1 triggers hyperphosphorylation of p60 in the presence of additional cytosolic factors. CAF-1 containing hyperphosphorylated p60 prepared from mitotic cells is inactive in nucleosome assembly and becomes activated by dephosphorylation in vitro. These data provide functional evidence for a requirement of the cell cycle machinery for nucleosome assembly by CAF-1 during DNA replication.  相似文献   

17.
18.
19.
Minichromosome Maintenance protein 10 (MCM10) is essential for DNA replication initiation and DNA elongation in yeasts and animals. Although the functions of MCM10 in DNA replication and repair have been well documented, the detailed mechanisms for MCM10 in these processes are not well known. Here, we identified AtMCM10 gene through a forward genetic screening for releasing a silenced marker gene. Although plant MCM10 possesses a similar crystal structure as animal MCM10, AtMCM10 is not essential for plant growth or development in Arabidopsis. AtMCM10 can directly bind to histone H3-H4 and promotes nucleosome assembly in vitro. The nucleosome density is decreased in Atmcm10, and most of the nucleosome density decreased regions in Atmcm10 are also regulated by newly synthesized histone chaperone Chromatin Assembly Factor-1 (CAF-1). Loss of both AtMCM10 and CAF-1 is embryo lethal, indicating that AtMCM10 and CAF-1 are indispensable for replication-coupled nucleosome assembly. AtMCM10 interacts with both new and parental histones. Atmcm10 mutants have lower H3.1 abundance and reduced H3K27me1/3 levels with releasing some silenced transposons. We propose that AtMCM10 deposits new and parental histones during nucleosome assembly, maintaining proper epigenetic modifications and genome stability during DNA replication.  相似文献   

20.
We have isolated and sequenced cDNA clones for the small subunit (30-kDa subunit) of rabbit calcium-dependent protease (Ca2+-protease) using synthesized oligodeoxynucleotide probes based on the partial amino acid sequence of the protein. A nearly full-length cDNA clone containing the total amino acid coding sequence was obtained. From the deduced sequence, the following conclusions about possible functions of the protein are presented. The kDa subunit comprises 266 residues (Mr = 28,238). The N-terminal region (64 residues) is mainly composed of glycine (37 residues) and hydrophobic amino acids and may interact with the cell membrane or an organelle. The sequence of the C-terminal 168 residues is highly homologous to the corresponding C-terminal region of the large subunit (80-kDa subunit) which has been identified as the calcium-binding domain. This region of the 30-kDa subunit contains four E-F hand structures and presumably binds Ca2+, as in the case of the 80-kDa subunit. Thus, the 30-kDa subunit may play important roles in regulating enzyme activity and/or possibly in determining the location of the Ca2+-protease. The marked sequence homology of the C-terminal regions of the two subunits may indicate that the calcium-binding domains have evolved from the same ancestral gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号