首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
In the IsTaR 1 serodeme of T. brucei the 3 variant surface glycoprotein (VSG) gene family contains about 10 members, one of which has a telomeric location on a minichromosome. The expression linked copy (ELC) of the 3 VSG gene which occurs in an antigenic variant expressing the 3 VSG, also has a telomeric location but unlike the minichromosomal 3 VSG gene has restriction sites upstream from the 5' barren region. This ELC is retained on the same telomere in a subsequent variant that expresses a telomeric 7 VSG ELC and in relapse variants and procyclic forms derived from variant antigenic types (VATs) 3 and 7. The 7 ELC has a restriction map upstream from the 5' barren region that differs from, but is similar to, that of the 3 ELC. These data indicate that the 3 and 7 ELCs are on different telomeres when expressed.  相似文献   

3.
G A Buck  C Jacquemot  T Baltz  H Eisen 《Gene》1984,32(3):329-336
Variable surface glycoprotein (VSG) genes in African trypanosomes are often activated by the duplicative transposition of a silent basic copy (BC) gene into an unlinked telomerically located expression site, producing an active expression-linked copy (ELC) of that gene. However, some BC genes that are already linked to a telomere are activated without apparent duplication or transposition. We have recently shown that an active VSG ELC can be inactivated in situ, apparently without rearrangement. To explain these observations it has been suggested that VSG genes that are associated with chromosome telomeres are activated by chromosome end exchanges that occur at a considerable distance upstream from the genes themselves and place them cis to a unique VSG expression element. In an attempt to test this model we derived five VSG-1 expressing variants from BoTat-2, a VSG-2 expressing variant of Trypanosoma equiperdum which carries an inactive residual VSG-1 ELC (R-ELC) as well as the active VSG-2 ELC near unlinked chromosome telomeres. We examined the fates of the VSG-2 ELC and the VSG-1 R-ELC in these variants. All five had maintained the VSG-1 R-ELC; three in a reactivated form and two in an inactive state. The latter two variants carried new, active VSG-1 ELCs: one in the site that had previously contained the VSG-2 ELC and one in a previously unidentified site. The VSG-2 ELC was lost in all five of the variants. The results are not consistent with the simple chromosome end exchange model, which predicts that the VSG-2 ELC would be inactivated but not deleted when the VSG-1 R-ELC was reactivated.  相似文献   

4.
The expression of several trypanosome surface antigen genes proceeds by duplication of a basic copy (BC) of the gene and transposition of the expression-linked copy (ELC) into an expression site. This site, which seems to be the same for different genes of the same repertoire, is located near a chromosome end. In the AnTat 1.1 antigen gene expression site, the ELC is found associated with another sequence that we have called the “companion.” We found that this companion is the transposed copy of another sequence also located in an unstable DNA terminus, and that it is conserved in the expression site of AnTat 1.10 and AnTat 1.1B, two clones successively derived from AnTat 1.1. The companion sequence is not part of the surface antigen gene, but we may infer from extensive homologies with another ELC sequence (IoTat 1.3, J. E. Donelson, personal communication) that it represents a 5′ residual fragment of a former ELC. In three other AnTat 1.1-like clones, the companion sequence was not found associated with the ELC. It is concluded that the expression-linked duplicative transposition of variable antigen genes is a flexible mechanism, which can apply to variably sized stretches of the same BC.  相似文献   

5.
S Longacre  H Eisen 《The EMBO journal》1986,5(5):1057-1063
A rapid technique involving the S1 nuclease resistance of RNA:DNA duplexes has been used to screen four Trypanosoma equiperdum variant surface glycoprotein (VSG) genes for evidence of hybrid gene structure in their transcribed regions. The results suggest that VSGs appearing early in a chronic infection each have a complete co-linear basic copy (BC) of their expressed gene while VSGs appearing later in infection are particularly associated with BC genes which are recombined before being expressed. The intensities of the S1-protected bands from hybrid VSGs indicate that the basic and expression linked copies are present in equivalent gene dosages. In addition, studies are presented on the expression of two additional VSG genes in T. equiperdum, VSG 4 and VSG 78, which (i) show that the basic copies are not located on telomeres even though one (VSG 4) is expressed early in infection and (ii) emphasize the role of a predominant expression site in T. equiperdum while nevertheless confirming the presence of multiple expression sites.  相似文献   

6.
Trypanosoma brucei contains more than a hundred genes coding for the different variant surface glycoproteins (VSGs). Activation of some of these genes involves the duplication of the gene (the basic copy or BC) and transposition of the duplicate to an expression site (yielding the expression-linked copy or ELC). We have cloned large fragments of genomic DNA in cosmid vectors in Escherichia coli. Cosmids containing the BCs of genes 117, 118 and 121 were readily obtained, but DNA containing the ELCs was strongly selected against in the cosmid and plasmid cloning systems used. We have analysed the distribution of VSG genes in the genome using probes for the sequences at the edges of the transposed segment which are partially homologous among these genes. In genomic cosmid clone banks, about 9% of all colonies hybridize with probes from the 5'- and 3'-edges of the transposed segment, showing that these sequences are linked in the genome. Moreover, the 117 and 118 BC cosmids contain several additional putative VSG genes in tandem, as deduced from hybridization and sequence analyses. We conclude that the VSG genes are highly clustered and share common sequences at the borders of the transposed segment.  相似文献   

7.
Telomere conversion in trypanosomes.   总被引:18,自引:7,他引:11       下载免费PDF全文
Activation of the gene coding for variant surface glycoprotein (VSG) 118 in Trypanosoma brucei proceeds via a duplicative transposition to a telomeric expression site. The resulting active expression-linked extra copy (ELC) is usually flanked by DNA that lacks sites for most restriction enzymes and that is thought to interfere with the cloning of the ELC as recombinant DNA in Escherichia coli. We have circumvented this problem by cloning an aberrant 118 ELC gene, flanked at the 3'-side by at least 1 kb DNA, that contains restriction enzyme sites. Our analysis shows that this DNA and the 3'-end of the 118 ELC gene are derived from another VSG gene (1.1006) that is permanently located at a telomeric position. We propose that the 3'-end of the 1.1006 gene and (all of) its 3' flanking sequence moved to the expression site by a telomere conversion. Such a telomere conversion can also account for the appearance of an extra copy of the 1.1006 gene detected in a sub-population of our trypanosome strain.  相似文献   

8.
9.
D F Cully  H S Ip  G A Cross 《Cell》1985,42(1):173-182
Trypanosoma brucei variant surface glycoprotein (VSG) genes are activated either by duplicative (DA) transposition of the gene to a pre-activated expression site or by nonduplicative (NDA) activation of a previously silent telomeric gene. We have obtained a recombinant clone spanning the 5' barren region of the expression linked copy of the duplicated VSG gene 117a. By DNA sequence and hybridization analyses we have identified a pleomorphic family of 14-25 non-VSG genes that lie upstream of both DA and NDA VSG expression sites. These expression site associated genes (ESAGs) encode 1.2 kb poly(A)+ mRNAs that are specifically transcribed from the active VSG expression telomere in mammalian bloodstream stages of T. brucei but, in common with VSG genes, are not transcribed in procyclic culture forms. cDNA and genomic sequences predict open reading frames that are conserved in the two ESAGs examined.  相似文献   

10.
Trypanosome variant surface glycoprotein genes expressed early in infection   总被引:11,自引:0,他引:11  
We have studied further the genes for trypanosomal variant surface glycoproteins expressed during a chronic infection of rabbits with Trypanosoma brucei, strain 427. We show that there are three closely related chromosomal-internal isogenes for VSG 121; expression of one of these genes is accompanied by the duplicate transposition of the gene to a telomeric expression site, also used by other chromosome-internal VSG genes. The 3' end of the 121 gene is replaced during transposition with another sequence, also found in the VSG mRNAs of two other variants. We infer that an incoming VSG gene duplicate recombines with the resident gene in the expression site and may exchange ends in this process. The extra expression-linked copy of the 121 gene is lost when another gene enters the expression site. However, when the telomeric VSG gene 221 is activated without duplication the extra 121 gene copy is inactivated without detectable alterations in or around the gene. We have also analysed the VSG genes expressed very early when trypanosomes are introduced into rats or tissue culture. The five genes identified in 24 independent switching events were all found to be telomeric genes and we calculate that the telomeric 1.8 gene has a 50% chance of being activated in this trypanosome strain when the trypanosome switches the VSG that is synthesized. We argue that the preferential expression of telomeric VSG genes is due to two factors: first, some telomeric genes reside in an inactive expression site, that can be reactivated; second, telomeric genes can enter an active expression site by a duplicative telomere conversion and this process occurs more frequently than the duplicative transposition of chromosome-internal genes to an expression site.  相似文献   

11.
12.
A variant surface glycoprotein (VSG) of Trypanosoma brucei is encoded by a gene whose expression is not governed by duplication-transposition. There are two copies of this gene. The 5' flanking regions of the two genes are indistinguishable by restriction mapping, although each possesses approximately 5-10 Kbp of DNA which is devoid of restriction sites. All restriction enzymes tested appeared to cut genomic DNA at a uniform distance 3' of the gene. This, coupled with the observed sensitivity of both genes to BAL 31, indicates that they lie near chromosomal termini. Length variation occurs 3' of these genes in bloodstream clones and their procyclic derivatives, although the number of length variants is conserved. This suggests that length variation alone does not control VSG switching or gene expression and that constraints exist on the extent to which 3' flanking regions can vary in length.  相似文献   

13.
A recombinant clone of an expression-linked extra copy (ELC) gene of a trypanosome-variable surface glycoprotein was sequenced. In addition the sequences of the corresponding cDNA and portions of the two basic copy genes were determined. Comparison of these sequences reveals that the 5' boundary of the ELC-transposed segment (2.2 kb) occurs within a repetitive sequence about 700 bp upstream from the start codon of the coding sequence. This sequence does not contain internal symmetries and is not homologous with the repetitive sequence at the 3' boundary. The first 35 nucleotides of the cDNA are different than the corresponding ELC sequence and presumably were transcribed from another genomic location. A restriction fragment containing predominantly sequences outside of the 5' boundary hybridizes to a Pst I fragment whose length is variable in different trypanosome clones. This hybridization pattern is similar to that observed using probes for surface glycoprotein genes that are expressed via the nonduplication-associated (NDA) mechanism rather than the ELC mechanism. This indicates that there is a sequence correlation between these two DNA rearrangement mechanism.  相似文献   

14.
Pulsed field gradient gel electrophoresis fractionates chromosome-sized DNA molecules from T. brucei. About 60% of the DNA remains in or close to the gel slot (large DNA). There are about three chromosomes of approximately 2 Mb, at least six chromosomes of 200-700 kb, and roughly a hundred mini-chromosomes of 50-150 kb. The basic copy genes for VSGs 118 and 221 reside in large DNA. Their activation by duplicative transposition leads to the appearance of an additional copy in the 2 Mb DNA, showing that activation involves an interchromosomal gene transposition. When gene 221 is activated without duplication, it remains in large DNA, proving that at least two sites for expression of VSG genes exist. In support of this, the mini-exons encoding the 5' 35 nucleotides of VSG messenger RNAs are in large and 2 Mb DNA. The mini-chromosomes hybridize strongly to VSG gene probes and are absent in C. fasciculata. We suggest that their main function is to provide a large pool of telomeric VSG genes.  相似文献   

15.
J.C. Boothroyd  G.A.M. Cross 《Gene》1982,20(2):281-289
The nucleotide sequence of the 5′ end of the mRNA for variant surface glycoprotein (VSG) 117 has been determined and compared with the sequence of the unexpressed basic copy (BC) of the VSG 117 gene. This shows the existence of an exon 35 nucleotides long at the 5′ end of the mRNA. The evidence suggests that this ‘mini-exon’ is derived from the expression site into which the VSG 117 BC is transposed during activation. The nucleotide sequence of this mini-exon is indistinguishable from that recently found for a different VSG, 118 (Van der Ploeg et al., Nucl. Acids Res. 10 (1982) 3591–3604). Analysis of the 5′ end of the mRNA for another VSG (221) whose gene is thought to be activated by a different mechanism to that of VSGs 117 and 118 indicates that the 5′- most 35 nucleotides of the VSG 221 mRNA are identical to the 117/118 mini-exon sequence. The implications of these results for the mechanism of VSG gene expression are discussed.  相似文献   

16.
17.
In the mammalian bloodstream, African trypanosomes express variant surface glycoprotein (VSG) genes from a family of long and complex telomeric expression sites. VSG switching generally occurs by the duplication of different VSG genes into these sites by gene conversion involving a series of 70 base pair (70bp) repeats in the 5' flank. In contrast, when VSG is first synthesised by trypanosomes in the tsetse fly at the metacyclic stage, a separate set of telomeric expression sites is activated. These latter telomeres appear not to act as recipients in gene conversion. We have found that the structure of two such expression sites is simple, with very short 70bp repeat regions and very little other sequence in common with bloodstream expression sites. However, the two telomeres readily act as donors in VSG gene conversion in the bloodstream and we show for one a consistent association of the conversion 5' end point with the short 70bp repeat region. These findings help explain why a very predictable set of VSGs is expressed in the tsetse fly and have implications for VSG gene conversion mechanisms.  相似文献   

18.
African trypanosomes are covered by a dense protein layer that is immunologically distinct on different trypanosome isolates and is termed the variant surface glycoprotein (VSG). The different VSGs are expressed in a general order, where some VSGs appear preferentially early in infection and others only later. The exposed epitopes on a late antigen, VSG 78, of T.equiperdum were studied by the technique of monoclonal antibody (MAb) escape selection. MAbs that neutralize trypanosomes bearing VSG 78 reacted with the VSG only when it was attached to the trypanosome surface, suggesting that the most immunogenic surface epitopes are conformational. Trypanosome clones resistant to one of the MAbs yet still expressing VSG 78 or 78(20) were isolated in vitro. Two independent variants resistant to MAb H3 changed Ser192 to Arg by a single base change in the VSG gene and a variant resistant to MAb H21 had a single base change that converted Gln172 to Glu. A variant resistant to MAb H7 had several changes in the VSG gene, a gene conversion in the 5' region and an isolated mutation in codon 220 that is proposed to be responsible for the resistance phenotype. The isotypic bias of the MAbs against VSG 78 and an analysis of the natural variants that are resistant to MAb 78H21 suggest that glycosylation plays a role in the immunogenicity of these proteins. The analysis defines some of the exposed amino acid residues and demonstrates that VSG genes are altered by mutations and small gene conversions as well as replaced by large gene conversion-like events. The results provide biological data supporting the model of VSG structure obtained by crystallographic studies.  相似文献   

19.
We have defined the genomic organization and genomic context of a Trypanosoma brucei brucei gene family encoding variant surface glycoproteins (VSGs). This gene family is neither tandemly repeated nor closely linked in the genome, and is not located on small or intermediate size chromosomes. Two dispersed repeated sequence elements, RIME-ingi and the upstream repeat sequence, are linked to members of this gene family; however, the upstream repeat sequences are closely linked only to the basic copy. In other isolates of T.b. brucei this gene family appears conserved with some variation; a restriction fragment length polymorphism found among these isolates suggests the hypothesis that VSG genes may occasionally be diploid. A model accounting for both the generation of dispersed families of VSG genes, and for the interstrain variability of VSG genes, is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号