首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies showing that different types of DNA adducts are repaired in human cells at different rates suggest that DNA adduct conformation is the major determinant of the rate of nucleotide excision repair. However, recent studies of repair of cyclobutane pyrimidine dimers or benzo[a]pyrene diol epoxide (BPDE)-induced adducts at the nucleotide level in DNA of normal human fibroblasts indicate that the rate of repair of the same adduct at different nucleotide positions can vary up to 10-fold, suggesting an important role for local DNA conformation. To see if site-specific DNA repair is a common phenomenon for bulky DNA adducts, we determined the rate of repair of 1-nitrosopyrene (1-NOP)-induced adducts in exon 3 of the hypoxanthine phosphoribosyltransferase gene at the nucleotide level using ligation-mediated PCR. To distinguish between the contributions of adduct conformation and local DNA conformation to the rate of repair, we compared the results obtained with 1-NOP with those we obtained previously using BPDE. The principal DNA adduct formed by either agent involves guanine. We found that rates of repair of 1-NOP-induced adducts also varied significantly at the nucleotide level, but the pattern of site-specific repair differed from that of BPDE-induced adducts at the same guanine positions in the same region of DNA. The average rate of excision repair of 1-NOP adducts in exon 3 was two to three times faster than that of BPDE adducts, but at particular nucleotides the rate was slower or faster than that of BPDE adducts or, in some cases, equal to that of BPDE adducts. These results indicate that the contribution of the local DNA conformation to the rate of repair at a particular nucleotide position depends upon the specific DNA adduct involved. However, the data also indicate that the conformation of the DNA adduct is not the only factor contributing to the rate of repair at different nucleotide positions. Instead, the rate of repair at a particular nucleotide position depends on the interaction between the specific adduct conformation and the local DNA conformation at that nucleotide.  相似文献   

2.
Excision repair of DNA damage produced by 4-nitroquinoline 1-oxide (4NQO), a potent chemical carcinogen, was compared in a normal human amnion FL cell line and a xeroderma pigmentosum (XP) cell line unable to repair ultraviolet-induced pyramidine dimers. The main objective of this study was to investigate, by a direct assay of the loss of damage from DNA, whether DNA damage induced by 4NQO in human cells is repaired by the excision-repair system as in Escherichia coli cells. DNA was extracted from FL and XP cells treated with [3H]4NQO, hydrolyzed and subjected to radiochromatographic analysis in order to quantitate the initial formation of 4NQO damage and subsequent disappearance during post-incubation. Two peaks of stable 4NQO-quanine adducts appeared on the chromatogram, together with one peak of stable 4NQO-adenine adduct and a peak due to 4-aminoquinoline 1-oxide (4AQO) released from a labile fraction of 4NQO-guanine adduct during hydrolysis. The three kinds of stable 4NQO-purine adduct disappeared from DNA of the FL cells at almost the same rate of about 60% during 24-h post-incubation in culture medium, and 4AQO disappeared somewhat faster. In the XP cells, however, the stable adducts did not disappear from DNA, whereas about 40% of the 4AQO-releasing adduct disappeared from DNA. These findings at the molecular level quantitatively parallel the previous findings at the cellular level that the XP cells are several times as sensitive as normal cells to killing by 4NQO. These results lead to the conclusion that in human cells 4NQO-induced lethality is mainly due to the four kinds of 4NQO-purine adduct as it is in E. coli, and that the adducts are excisable by the same excision-repair mechanism that works on pyramidine dimers.  相似文献   

3.
Duplex unwinding associated with DNA modification by 4-acetoxyaminoquinoline-1-oxide, a model ultimate carcinogen of 4-nitroquinoline-1-oxide, has been determined by the agarose gel electrophoresis band-shift method. An average unwinding angle per stable adduct of -15.1 degrees +/- 1.5 degrees for negatively supercoiled topoisomers and -6.5 degrees +/- 1.4 degrees for positively supercoiled topoisomers was obtained. Because of the different proportion of stable adducts (dGuo-N2-AQO, dGuo-C8-AQO, dAdo-N6-AQO) between negatively (8:1.5:0.5) and positively (5:2.5:1) supercoiled topoisomers, the difference in unwinding angles is suggestive of a diverse contribution of the various adducts to the overall conformational change. Since the largest unwinding angle was coupled with the highest proportion of dGuo-N2-AQO adduct, it is likely that this adduct is the most distortive lesion. A contribution of sites of base loss to DNA unwinding was also observed.  相似文献   

4.
Using the UVRABC nuclease as a reagent coupled with DNA restriction and hybridization analysis we have developed a method to quantify N-acetoxy-2-acetylaminofluorene (NAAAF)-induced DNA damage in the coding and noncoding sequences of the dihydrofolate reductase (DHFR) gene in Chinese hamster ovary (CHO) cells. High performance liquid chromatography analysis shows that the only DNA adduct formed in NAAAF-treated CHO cells is N-(deoxyguanosine-C8-yl)-2-aminofluorene (dG-C8-AF). DNA sequencing analysis demonstrates that the UVRABC nuclease incises at all potential sites in which dG-C8-AF adduct may form in linear DNA fragments. We have found that the formation and removal of dG-C8-AF adducts in the coding and 3' downstream noncoding sequences of the DHFR domain are similar in cells treated with 10 microM NAAAF (3.1 adducts/14 kilobases); DNA adduct removal attains 70% for both sequences within 24 h. This result contrasts with that obtained for the repair of cyclobutane dipyrimidines in the DHFR gene, in which the repair efficiency is much higher in the coding region than in the 3' downstream noncoding region. Our results suggest that in CHO cells the repair pathway for aminofluorene DNA adducts is not the same as that for cyclobutane dipyrimidines. This new technique has the potential to detect a variety of chemical carcinogen induced DNA adducts at the gene level in cultured cells and in DNA isolated from animal tissues.  相似文献   

5.
Using 32P-postlabelling and thin layer chromatography, DNA adduct formation by the potent animal carcinogen 2,4-diaminotoluene in Fischer-344 rats was investigated. DNA from four different organs, liver, mammary gland, kidney and lung, were examined for adducts following single administration of this compound. DNA binding was detected in all four organs, with each producing one major and two minor adduct spots on autoradiograms. The adducts induced were qualitatively identical among the different organs, but quantitative differences were observed. The two target organs of 2,4-diaminotoluene induced carcinogenesis, the liver and mammary gland produced higher adduct yields, with levels up to 30-times higher than those for the two non-target organs. Since the liver is the principal target for 2,4-diaminotoluene induced carcinogenesis, we further examined DNA adducts from this site for the effects of different doses and time points. DNA binding in liver was detected following doses as low as 4.1 mumol/kg. At the highest concentration examined (2046 mumol/kg), the level of the major adduct was 29.2 adducted nucleotides per 10(7) total nucleotides. The yields for the two minor adducts were approximately one-tenth that for the major adduct. Following a 410 mumol/kg dose, DNA adduct removal over time was examined. DNA adduct removal exhibited biphasic kinetics, with a rapid initial phase followed by a slower rate of elimination. Up to 60% of maximum adduct levels persisted after 2 weeks. DNA binding by 2,4-diaminotoluene was also compared to that by its weakly carcinogenic analog, 2,4-dinitrotoluene. The two compounds produced identical adduct patterns, suggesting that they share common metabolites and adducts. Adduct yields from 2,4-dinitrotoluene, however, were lower. The results of our studies suggest that the differences in carcinogenic potency between 2,4-diaminotoluene and 2,4-dinitrotoluene, as well as the organotropic effects of 2,4-diaminotoluene may be explained, in part, by quantitative differences in the extent of DNA adduct formation.  相似文献   

6.
The aim of this study was to use DNA adducts levels, detected by 32P-postlabelling, as a biomarker to assess human exposure to polycyclic aromatic hydrocarbons (PAHs) from a coke oven plant and explore the possible association between CYP1A1 MspI, GSTP1, GSTM1 and GSTT1 genotypes, and smoking status on bulky DNA adduct formation. A large amount of inter-individual variation in adduct level was observed among workers with the same job and the same smoking habits. No significant differences were observed in DNA adduct levels between the coke oven workers and control group. Smokers in the control group had significantly higher DNA adducts than the non-smokers in the same group (35.13+/-21.11 versus 11.18+/-8.00, per 10(8) nucleotides, P=0.003). In this group, the correlation between the level of DNA adducts and the cigarettes smoked was strongly significant (r=0.70, P<0.0005), but no correlation was found among the coke oven workers. Among non-smokers there was a significant difference between the control group and the coke oven workers (11.18+/-8.00 versus 24.62+/-15.20, per 10(8) nucleotides, P=0.03). These results suggests that tobacco smoke could behave as a confounding factor for evaluation of DNA adducts arising from occupational exposure. The levels of DNA adducts in smokers not occupationally exposed to PAHs is dependent on the polymorphisms CYP1A1 MspI in the 3' non-coding region (49.04+/-22.18 versus 25.85+/-15.87, per 10(8) nucleotides, P<0.05), but no effect was observed for the GST genotypes studied.  相似文献   

7.
Choudhury S  Pan J  Amin S  Chung FL  Roy R 《Biochemistry》2004,43(23):7514-7521
trans-4-Hydroxynonenal (HNE) is a major peroxidation product of omega-6 polyunsaturated fatty acids. The reaction of HNE with DNA produces four diastereomeric 1,N(2)-gamma-hydroxypropano adducts of deoxyguanosine (HNE-dG); background levels of these adducts have been detected in tissues of animals and humans. There is evidence to suggest that these adducts are mutagenic and involved in liver carcinogenesis in patients with Wilson's disease and in other human cancers. Here, we present biochemical evidence that in human cell nuclear extracts the HNE-dG adducts are repaired by the nucleotide excision repair (NER) pathway. To investigate the recognition and repair of HNE-dG adducts in human cell extracts, we prepared plasmid DNA substrates modified by HNE. [(32)P]-Postlabeling/HPLC determined that the HNE-dG adduct levels were approximately 1200/10(6) dG of plasmid DNA substrate. We used this substrate in an in vitro repair-synthesis assay to study the complete repair of HNE-induced DNA adducts in cell-free extracts. We observed that nuclear extracts from HeLa cells incorporated a significant amount of alpha[(32)P]dCTP in DNA that contained HNE-dG adducts by comparison with UV-irradiated DNA as the positive control. Such repair synthesis for UV damage or HNE-dG adducts did not occur in XPA cell nuclear extracts that lack the capacity for NER. However, XPA cells complemented with XPA protein restored repair synthesis for both of these adducts. To verify that HNE-dG adducts in DNA were indeed repaired, we measured HNE-dG adducts in the post-repaired DNA substrates by the [(32)P]-postlabeling/HPLC method, showing that 50-60% of HNE-dG adducts were removed from the HeLa cell nuclear extracts after 3 h at 30 degrees C. The repair kinetics indicated that the excision rate is faster than the rate of gap-filling/DNA synthesis. Furthermore, the HNE-dG adduct isomers 2 and 4 appeared to be repaired more efficiently at early time points than isomers 1 and 3.  相似文献   

8.
Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G(1), G(2) or G(3) of NarI sequence (5'-CCG(1)G(2)CG(3)CC-3'). Our (19)F-NMR/ICD results showed that FAAF at G(1) and G(3) prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G(2). We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G(3) and -G(1) duplexes incised more efficiently than the B-type G(2) duplex (G(3)~G(1)> G(2)). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G(2)~G(1)> G(3), a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts.  相似文献   

9.
The effect of chromatin structure on the binding of a chemical carcinogen to the genomic DNA was studied. The binding in vivo of the ultimate carcinogen, benzo-pyrene 7,8,-diol,-9,10-epoxide, to various regions of the SV40 chromosome was revealed by an immunological method. Particular attention was given to restriction fragments which include the origin of replication which is "non-nucleosomal" in a significant fraction of the chromosomes. The distribution of (+/-) trans-7,8-dihydrobenzo[alpha]pyrene-7,8-diol-9,10-epoxide (BPDE) adducts was studied in 1) SV40 DNA modified in vitro to a level of 20 adducts/molecule, 2) DNA from SV40 chromosomes modified in vivo to a level of less than 1 adduct, and 3) DNA from only those chromosomes with an open origin of replication. In other experiments, the binding of BPDE to the origin region was compared to the binding to nucleosome core particle DNA from the viral chromosome. The origin region bound 1.7-fold more BPDE than core DNA, while linker DNA is 3-fold more modified than core DNA. However, the origin region was only about 20% more modified than any other region of the chromosome. We conclude that while the conformation of the DNA in chromatin has a slight effect on its accessibility to the carcinogen, the SV40 chromosome does not contain a particular "hot spot" which is preferentially modified by BPDE.  相似文献   

10.
Acetaldehyde (AA) derived from alcoholic beverages is a confirmed carcinogen for esophageal and head and neck cancers. AA forms various DNA adducts and is thought to play a crucial role in carcinogenesis. Transient DNA adducts are usually repaired, but the stability of AA-derived DNA adducts has not been elucidated. We investigated the stability of N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG), a major AA-derived DNA adduct, in cultured cells. First, to determine the optimal concentration of AA for detecting N(2)-ethylidene-dG in cell culture, a dose-response study was performed using HL60 cells of the human promyelocytic leukemia cell line. An AA concentration ≥ 0.01% (1.8 mM) was required to detect N(2)-ethylidene-dG in vitro. We next examined the stability of N(2)-ethylidene-dG. After a 1 or 2h exposure to 0.01% of AA in a tightly sealed bottle, N(2)-ethylidene-dG content was measured by sensitive liquid chromatography tandem mass spectrometry immediately, 24h, and 48 h after exposure. After the 1h exposure, the mean (± SD) N(2)-ethylidene-dG contents were 12.1 ± 1.28, 8.20 ± 0.64, and 6.70 ± 0.52 adducts per 10(7) bases at each postexposure time. After the 2h exposure, N(2)-ethylidene-dG content increased to 21.4 ± 7.50, 10.5 ± 3.61, and 9.83 ± 3.90 adducts per 10(7) bases at each postexposure time. The half-life of this adduct was calculated as ~35 h in independent experiments. These results indicate that AA exposure from daily alcohol consumption may cause DNA damage and may increase the risk of alcohol-related carcinogenesis.  相似文献   

11.
12.
The potent carcinogen, 4-nitroquinoline 1-oxide, is known to mimic the biological effects of ultraviolet light on various living organisms. We conclude that the 4NQO2 effects on Escherichia coli are mostly due to covalent binding of 4NQO to DNA producing 4NQO-guanine and 4NQO-adenine adducts in a ratio of about 4:1 without repair and about 7:1 after repair. This is based on the following experimental results. From E. coli cells treated with [3H]4NQO, DNA was extracted and subjected to radiochromatography. We detected two peaks of 4NQO-guanine adduct, one peak of 4NQO-adenine adduct and a peak due to 4-aminoquinoline 1-oxide released from a labile fraction of 4NQO-guanine adducts during acid hydrolysis of DNA before streaking it on paper for chromatography. These four kinds of 4NQO-purine adducts disappeared from DNA of the normal strain at almost the same rate, about 85% in 60 minutes by post-incubating in nutrient broth, but these adducts did not disappear for the uvrA derivative lacking the excision-repair ability for ultraviolet-induced pyrimidine dimers, except for slight disappearance of 4AQO-releasing adduct. The number of DNA lesions per genome of the uvrA strain at 37% survival was found to be nearly equal between the 4NQO-purine adducts (~200 lesions) and pyrimidine dimers (~100 lesions). These findings at the molecular level quantitatively parallel the previous findings at the cellular level that the uvrA strain is about 25 to 30 times as sensitive as its parental strain to killing and mutation by either 4NQO or ultraviolet light. The unique characteristics of 4NQO-purine products are discussed in relation to the mutational specificity of 4NQO and the more-than-supposed complexity of excision repair for DNA.  相似文献   

13.
In order to understand the action of the chemotherapeutic drug cisplatin, it is necessary to determine why some types of cisplatin-DNA intrastrand crosslinks are repaired better than others. Using cell extracts and circular duplex DNA, we compared nucleotide excision repair of uniquely placed 1,2-GG, 1,2-AG, and 1,3-GTG cisplatin-crosslinks, and a 2-acetylaminofluorene lesion. The 1,3 crosslink and the acetylaminofluorene lesion were repaired by normal cell extracts approximately 15-20 fold better than the 1,2 crosslinks. No evidence was found for selective shielding of 1,2 cisplatin crosslinks from repair by cellular proteins. Fractionation of cell extracts to remove putative shielding proteins did not improve repair of the 1,2-GG crosslink, and cell extracts did not selectively inhibit access of UvrABC incision nuclease to 1,2-GG crosslinks. The poorer repair of 1,2 crosslinks in comparison to the 1,3 crosslink is more likely a consequence of different structural alterations of the DNA helix. In support of this, a 1,2-GG-cisplatin crosslink was much better repaired when it was opposite one or two non-complementary thymines. Extracts from cells defective in the hMutSalpha mismatch binding activity also showed preferential repair of the 1,3 crosslink over the 1,2 crosslink, and increased repair of the 1,2 adduct when opposite thymines, showing that hMutSalphais not involved in the differential NER of these substrates in vitro. Mismatched cisplatin adducts could arise by translesion DNA synthesis, and improved repair of such adducts could promote cisplatin-induced mutagenesis in some cases.  相似文献   

14.
Zhao C  Tyndyk M  Eide I  Hemminki K 《Mutation research》1999,424(1-2):117-125
Detection of 7-alkylguanine DNA adducts is useful to assess human exposure to and the resulting DNA damage caused by simple alkylating agents. The background 7-methylguanine (7-MG) and 7-hydroxyethylguanine (7-HEG) adduct levels were determined in human and rat tissues, using thin-layer chromatography (TLC) combined with high pressure liquid chromatography (HPLC). In addition, these two adduct levels were also compared in various tissues between smokers and non-smokers. The results demonstrated that the background level of 7-alkylguanine adducts in WBC and lung tissues of non-smokers was 2.9 and 4.0 adducts/107 nucleotides, respectively. In smokers with lung cancers 7-MG adduct level in lung samples (6.3+/-1.9 adducts/107 nucleotides) and in bronchus samples (6.1+/-1.5 adducts/107 nucleotides) was significantly higher than that in WBC samples (3.3+/-0.9 adducts/107 nucleotides). 7-HEG adduct levels obtained from the same individuals were 0.8+/-0.3 in lung, 1.0+/-0.8 in bronchus and 0.6+/-0.2 adducts/107 nucleotides in WBC, respectively. Animal studies showed that background levels of 7-MG (2.1-2.5 adducts/107 nucleotides) in control rats were approximately 2-4-fold higher than 7-HEG levels (0.6-0.9 adducts/107 nucleotides). After a 3-day exposure to 300 ppm ethene, 7-HEG adducts accumulated to a similar extent in different tissues of rats, with the mean adduct level of 5.6-7.0 in liver, 7.4 in lymphocytes and 5.5 adducts/107 nucleotides in kidney.  相似文献   

15.
The initiation of carcinogenesis by carcinogens such as 7r,8t-dihydroxy-9,10t-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I) is thought to involve the formation of DNA adducts. However, the diastereomeric diol epoxide, 7r,8t-dihydroxy-9,10c-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-II), also forms DNA adducts but is inactive in standard carcinogenesis models. We have measured the formation and loss of DNA adducts derived from BPDE-II in a DNA-repair-proficient line of Chinese hamster ovary (CHO) cells, AT3-2, and in two derived mutant cell lines, UVL-1 and UVL-10, which are unable to repair bulky DNA adducts. BPDE-II adducts were lost from cellular DNA in AT3-2 cells with a half-life of 13.8 h; this was about twice the rate found for BPDE-I adducts. BPDE-II adducts were also lost from DNA in UVL-1 and UVL-10 cells, but at a much slower rate. When purified DNA was modified in vitro with BPDE-II and then held at 37 degrees C, DNA adducts were removed at a rate identical to that seen in UVL-1 and UVL-10 cells, suggesting that the loss in these cells was not due to enzymatic DNA-repair processes but to chemical lability of the adducts. Mutant frequencies at the APRT and HPRT loci were measured at BPDE-II doses that resulted in greater than 20% survival, and were found to increase linearly with dose. In the DNA-repair-deficient cells, the HPRT locus was moderately hypermutable compared with AT3-2 cells (about 5-fold); the APRT locus was extremely hypermutable, giving about 25-fold higher mutant fractions in UVL-1 and UVL-10 than in AT3-2 cells at equal initial levels of binding. When we compared the mutational efficiency of BPDE-II at both loci in AT3-2 cells (the mutant frequency in mutants/10(6) survivors at a dose that resulted in one adduct per 10(6) base pairs) with our previous studies of BPDE-1, we found that BPDE-II was 4-5 times less efficient as a mutagen than BPDE-I. This difference in mutational efficiency could be explained in part by the increased rate of loss of BPDE-II adducts from the cellular DNA, part of which was due to an increased rate of enzymatic removal of these lesions compared with the removal of BPDE-I adducts.  相似文献   

16.
Two related carcinogen adducts, N-(deoxyguanosin-8-yl)-2-aminofluorene (AF) or N-(deoxyguanosin-8-yl)-N-acetyl-2-aminofluorene (AAF), were introduced into the lacZ' gene at base position 6253 of the minus strand of M13mp9 viral DNA. The construction of this site-specifically modified DNA was accomplished by first preparing a gapped heteroduplex missing 7 nucleotides at position 6251-6257 followed by ligation with an unmodified heptamer or with a heptamer containing either an AF or AAF adduct. These site-specifically modified templates were transfected into competent wild-type Escherichia coli cells (JM103) and a uvrA strain (SMH12). The mutation spectrum was determined by phenotypic selection of colorless plaques indicating a defective beta-galactosidase marker enzyme and by an in situ hybridization procedure to detect single base pair mismatches in the adduct region. DNA sequencing was used to characterize 179 of the mutants obtained. We found that both adducts were capable of inducing base substitution mutations at the adduct site and in the local region of the adduct. A specific frameshift (+1G) was also observed at a displaced site. All of the frameshift mutations occurred at the ligation site of the modified oligonucleotide. Control experiments with an unmodified oligonucleotide did not show an enhancement of mutations at this site, indicating that the adducts may have been responsible for these frameshifts. The mutations spectra induced by these adducts suggest that mutagenesis depends not only on adduct structure but also the sequence in which the adduct is located and the host cell type used for mutation expression.  相似文献   

17.
We here present a general method to detect alkylation damage in specific genomic regions. Cells are treated with nitrogen mustard or dimethyl sulfate; the DNA is extracted and restricted, and the parental DNA is separated. Strand breaks are created at sites of N-alkylpurines by neutral depurination followed by alkaline hydrolysis. The DNA is then separated on alkaline agarose gels and transferred, and gene fragments are detected after hybridization with specific probes. Using this approach, we have examined damage formation and repair in the active genes dihydrofolate reductase and adenosine phosphoribosyltransferase, in a fragment containing the inactive c-fos gene and in a nontranscribed region downstream from the dihydrofolate reductase gene in Chinese hamster ovary cells. We find variations in the formation of nitrogen mustard adducts in these different regions. Nitrogen mustard adducts are preferentially repaired from the active genes as compared to the inactive gene and the noncoding region. However, we find no preferential damage or repair in these regions of the N7-methylpurines after dimethyl sulfate damage. Thus, there are significant differences in the repair mechanisms for two alkylating agents; this may implicate that there are important differences in the structural alterations in chromatin invoked by these agents. As a comparison to the studies of adduct levels in specific genomic regions, we have examined the overall genome, average adduct formation, and repair by these agents in the hamster cells. We used alkaline sucrose gradient sedimentation, and also a novel approach: quantitation of the DNA smears stained by ethidium bromide in the alkaline gels (used in the gene-selective repair analysis). Both these techniques gave similar data for adduct formation and repair; there was less initial damage formation and repair in the average genome than in specific genomic regions.  相似文献   

18.
19.
Butadiene monoepoxide (BMO) alkylated guanine N7 and adenine N 6 adducts were prepared and enriched by solid phase extraction and HPLC. The purified adducts were analysed by a modified 32P-postlabelling assay, which utilized one dimensional TLC chromatography and a subsequent HPLC analysis with UV and radioactivity detectors. In vitro with Ct-DNA the formation of N7-dGMP and N 6-dAMP adducts were linear at a concentration range of 44 to 870 nmol of BMO per mg DNA at physiological pH. N7- dGMP and N 6-dAMP adducts were formed in a ratio of 200:1. In dGMP and in dAMP 48 % and 86 % of adducts were covalently bound to the C-2 carbon of BMO. CD-1 mice were inhalation exposed to butadiene for 5 days and 6 h per day. The N7-dGMP adduct level in lung samples of animals exposed to 200, 500 and 1300 ppm was 2.8 +/- 0.9 fmol, 11 +/- 2.0 fmol and 30 +/- 6.7 fmol in 10 mug DNA, respectively. The level of N 6-dAMP adducts in lung samples after 500 ppm and 1300 ppm exposure was 0.09 +/- 0.06 fmol and 0.11 +/- 0.05 fmol in 10 mug DNA. At 200 ppm the adduct level was below the detection limit. A sub-group of animals exposed to 1300 ppm was killed 3 weeks after the last exposure. N7-dGMP adducts were not detected but the level of N 6-dAMP adducts was not affected. N7-dGMP adducts were formed in a clear stereospecific manner in vivo. S -BMO adducts were the main product and represented 77 % (n = 4, SD = 2%) of total BMO adducts. No clear conclusion can be drawn about the enantiospecific DNA binding at the N 6 position of dAMP, because of the poor separation of the enantiomers. However, we could separate regioisomeric adducts which indicated that C-2 adducts represented 69 +/- 3 % of the total N 6 adducts formed in mice lung DNA. This observation is supported by the data derived from in vitro DNA experiments but is different to our previously published data, which indicates the 2:1 (C-1:C-2) ratio in regioisomer formation in nucleotides or nucleosides. We suggest that the data presented in this communication indicate a different mechanism between nucleotides and DNA in BMO-derived adduct formation- Dimroth rearrangement dominates in nucleotides, but in double stranded DNA a direct alkylation is probably the major mechanism of adduct formation.  相似文献   

20.
Butadiene monoepoxide (BMO) alkylated guanine N7 and adenine N 6 adducts were prepared and enriched by solid phase extraction and HPLC. The purified adducts were analysed by a modified 32P-postlabelling assay, which utilized one dimensional TLC chromatography and a subsequent HPLC analysis with UV and radioactivity detectors. In vitro with Ct-DNA the formation of N7-dGMP and N 6-dAMP adducts were linear at a concentration range of 44 to 870 nmol of BMO per mg DNA at physiological pH. N7- dGMP and N 6-dAMP adducts were formed in a ratio of 200:1. In dGMP and in dAMP 48 % and 86 % of adducts were covalently bound to the C-2 carbon of BMO. CD-1 mice were inhalation exposed to butadiene for 5 days and 6 h per day. The N7-dGMP adduct level in lung samples of animals exposed to 200, 500 and 1300 ppm was 2.8 +/- 0.9 fmol, 11 +/- 2.0 fmol and 30 +/- 6.7 fmol in 10 mug DNA, respectively. The level of N 6-dAMP adducts in lung samples after 500 ppm and 1300 ppm exposure was 0.09 +/- 0.06 fmol and 0.11 +/- 0.05 fmol in 10 mug DNA. At 200 ppm the adduct level was below the detection limit. A sub-group of animals exposed to 1300 ppm was killed 3 weeks after the last exposure. N7-dGMP adducts were not detected but the level of N 6-dAMP adducts was not affected. N7-dGMP adducts were formed in a clear stereospecific manner in vivo . S -BMO adducts were the main product and represented 77 % ( n = 4, SD = 2%) of total BMO adducts. No clear conclusion can be drawn about the enantiospecific DNA binding at the N 6 position of dAMP, because of the poor separation of the enantiomers. However, we could separate regioisomeric adducts which indicated that C-2 adducts represented 69 +/- 3 % of the total N 6 adducts formed in mice lung DNA. This observation is supported by the data derived from in vitro DNA experiments but is different to our previously published data, which indicates the 2:1 (C-1:C-2) ratio in regioisomer formation in nucleotides or nucleosides. We suggest that the data presented in this communication indicate a different mechanism between nucleotides and DNA in BMO-derived adduct formation- Dimroth rearrangement dominates in nucleotides, but in double stranded DNA a direct alkylation is probably the major mechanism of adduct formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号