首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bacteria, the expression of ribosomal proteins is often feedback-regulated at the translational level by the binding of the protein to its own mRNA. This is the case for L20, which binds to two distinct sites of its mRNA that both resemble its binding site on 23 S rRNA. In the present work, we report an NMR analysis of the interaction between the C-terminal domain of L20 (L20C) and both its rRNA- and mRNA-binding sites. Changes in the NMR chemical shifts of the L20C backbone nuclei were used to show that the same set of residues are modified upon addition of either the rRNA or the mRNA fragments, suggesting a mimicry at the atomic level. In addition, small angle x-ray scattering experiments, performed with the rRNA fragment, demonstrated the formation of a complex made of two RNAs and two L20C molecules. A low resolution model of this complex was then calculated using (i) the rRNA/L20C structure in the 50 S context and (ii) NMR and small angle x-ray scattering results. The formation of this complex is interesting in the context of gene regulation because it suggests that translational repression could be performed by a complex of two proteins, each interacting with the two distinct L20-binding sites within the operator.  相似文献   

2.
C Chiaruttini  M Milet    M Springer 《The EMBO journal》1996,15(16):4402-4413
In the IF3-L35-L20 operon encoding translation initiation factor 3 (IF3) and the two ribosomal proteins L35 and L20, the expression of the genes that code for the two ribosomal proteins is negatively regulated at the translational level by the cellular concentration of L20. This translational repressor directly regulates the expression of the gene encoding L35 and, via translational coupling, that of its own gene. Mutations that affect the control of the L35 gene were found exclusively at two sites: the first is located approximately 300 nucleotides upstream, and the second immediately 5' of the translation initiation site of the L35 gene. Mutations that fall between these two sites have little or no effect on the control, and the lack of effect of a deletion in the intervening region confirms this finding. RNA structure mapping in vitro suggests that the first site pairs with the second. We show that this pairing is also likely to occur in vivo because single mutations in either of these sites affect control, but base pair compensatory mutations re-establish control. We propose that these two distant sites can base-pair to form a long-range pseudoknot which is required for the control of the expression of the L35 gene.  相似文献   

3.
Escherichia coli ribosomal protein (r-protein) L20 is essential for the assembly of the 50S ribosomal subunit and is also a translational regulator of its own rpmI-rplT operon, encoding r-proteins L35 and L20 in that order. L20 directly represses the translation of the first cistron and, through translational coupling, that of its own gene. The translational operator of the operon is 450 nt in length and includes a long-range pseudoknot interaction between two RNA sequences separated by 280 nt. L20 has the potential to bind both to this pseudoknot and to an irregular hairpin, although only one site is occupied at a time during regulation. This work shows that the rpmI-rplT operon is regulated by competition between L20 and the ribosome for binding to mRNA in vitro and in vivo. Detailed studies on the regulatory mechanisms of r-protein synthesis have only been performed on the rpsO gene, regulated by r-protein S15, and on the alpha operon, regulated by S4. Both are thought to be controlled by a trapping mechanism, whereby the 30S ribosomal subunit, the mRNA, and the initiator tRNA are blocked as a nonfunctional preternary complex. This alternative mode of regulation of the rpmI-rplT operon raises the possibility that control is kinetically and not thermodynamically limited in this case. We show that the pseudoknot, which is known to be essential for L20 binding and regulation, also enhances 30S binding to mRNA as if this structure is specifically recognised by the ribosome.  相似文献   

4.
5.
Escherichia coli ribosomal L20 is one of five proteins essential for the first reconstitution step of the 50S ribosomal subunit in vitro. It is purely an assembly protein, because it can be withdrawn from the mature subunit without effect on ribosome activity. In addition, L20 represses the translation of its own gene by binding to two sites in its mRNA. The first site is a pseudoknot formed by a base-pairing interaction between nucleotide sequences separated by more than 280 nucleotides, whereas the second site is an irregular helix formed by base-pairing between neighbouring nucleotide sequences. Despite these differences, the mRNA folds in such a way that both L20 binding sites share secondary structure similarity with the L20 binding site located at the junction between helices H40 and H41 in 23S rRNA. Using a set of genetic, biochemical, biophysical, and structural experiments, we show here that all three sites are recognized similarly by L20.  相似文献   

6.
7.
8.
The L11 ribosomal protein operon of Escherichia coli contains the genes for L11 and L1 and is feedback regulated by the translational repressor L1. The mRNA target site for this repression is located close to the Shine-Dalgarno sequence for the first cistron, rp1K (L11). By use of a random mutagenesis procedure we have isolated and characterized a series of point mutations in the L11 leader mRNA which eliminate or greatly diminish the regulation by L1. The mutations define a region essential for translational regulation upstream of the L11 Shine-Dalgarno sequence and identify a region of structural homology with the L1 binding site on 23S rRNA. These results are also consistent with the previously proposed model for the secondary structure of the L11 leader mRNA.  相似文献   

9.
E. coli ribosomal protein L1 is a translational repressor of the synthesis in vitro of both proteins encoded in the L11 operon (L11 and L1). L1 is shown to act at a single target site within the first 160 bases of the bicistronic mRNA, near (or at) the translation initiation site of the L11 cistron. Synthesis of L1 apparently requires translation of the preceding L11 cistron, allowing regulation of the synthesis of both proteins from a single mRNA target site. This observation suggests a sequential translation mechanism that results in the equimolar synthesis rates of the two proteins observed in vivo. It was found that the presence of 23S rRNA, but not 16S rRNA, relieves translational inhibition by L1. L1 presumably recognizes structural features of the mRNA target site that are homologous to the L1-binding site of 23S rRNA. Although previous work indicated that translationally inhibited ribosomal protein mRNA is degraded in vivo, L1 repressor action in the present in vitro system was found not to involve mRNA degradation.  相似文献   

10.
Ribosomal protein L20 is crucial for the assembly of the large ribosomal subunit and represses the translation of its own mRNA. L20 mRNA carries two L20-binding sites, the first folding into a pseudoknot and the second into an imperfect stem and loop. These two sites and the L20-binding site on 23S ribosomal RNA are recognized similarly using a single RNA-binding site located on one face of L20. In this work, using gel filtration and fluorescence cross-correlation spectroscopy (FCCS) experiments, we first exclude the possibility that L20 forms a dimer, which would allow each monomer to bind one site of the mRNA. Secondly we show, using affinity purification and FCCS experiments, that only one molecule of L20 binds to the L20 mRNA despite the presence of two potential binding sites. Thirdly, using RNA chemical probing, we show that the two L20-binding sites are in interaction. This interaction provides an explanation for the single occupancy of the mRNA. The two interacting sites could form a single hybrid site or the binding of L20 to a first site may inhibit binding to the second. Models of regulation compatible with our data are discussed.  相似文献   

11.
Previous experiments showed that S15 inhibits its own translation by binding to its mRNA in a region overlapping the ribosome loading site. This binding was postulated to stabilize a pseudoknot structure that exists in equilibrium with two stem-loops and to trap the ribosome on its mRNA loading site in a transitory state. In this study, we investigated the effect of mutations in the translational operator on: the binding of protein S15, the formation of the 30S/mRNA/tRNA(fMet) ternary initiation complex, the ability of S15 to inhibit the formation of this ternary complex. The results were compared to in vivo expression and repression rates. The results show that (1) the pseudoknot is required for S15 recognition and translational control; (2) mRNA and 16S rRNA efficiently compete for S15 binding and 16S rRNA suppresses the ability of S15 to inhibit the formation of the active ternary complex; (3) the ribosome binds more efficiently to the pseudoknot than to the stem-loop; (4) sequences located between nucleotides 12 to 47 of the S15 coding phase enhances the efficiency of ribosome binding in vitro; this is correlated with enhanced in vivo expression and regulation rates.  相似文献   

12.
C K Tang  D E Draper 《Cell》1989,57(4):531-536
Translation of ribosomal proteins in the alpha operon of E. coli is repressed by one of the encoded proteins, S4; it specifically recognizes an RNA fragment containing the translational initiation site for the first gene in the operon. RNA structure mapping experiments have suggested a pseudoknot structure for the S4 binding site: the loop of a hairpin is base paired to sequences downstream of the hairpin. Here, we systematically test this proposed structure by measuring S4 binding to an extensive set of site-directed mutations that create compensatory base pair changes in potential helices. The pseudoknot folding is confirmed, and two additional, unexpected interactions within the pseudoknot are also detected. The overall structure is an unusual "double pseudoknot" linking a hairpin upstream of the ribosome binding site with sequences 2-10 codons downstream of the initiation codon. Stabilization of this structure by S4 could account for translational repression.  相似文献   

13.
We have used chemical modification to examine the conformation of 23 S rRNA in Escherichia coli ribosomes bearing erythromycin resistance mutations in ribosomal proteins L22 and L4. Changes in reactivity to chemical probes were observed at several nucleotide positions scattered throughout 23 S rRNA. The L4 mutation affects the reactivity of G799 and U1255 in domain II and that of A2572 in domain V. The L22 mutation influences modification in domain II at positions m5U747, G748, and A1268, as well as at A1614 in domain III and G2351 in domain V. The reactivity of A789 is weakly enhanced by both the L22 and L4 mutations. None of these nucleotide positions has previously been associated with macrolide antibiotic resistance. Interestingly, neither of the ribosomal protein mutations produces any detectable effects at or within the vicinity of A2058 in domain V, the site most frequently shown to confer macrolide resistance when altered by methylation or mutation. Thus, while L22 and L4 bind primarily to domain I of 23 S rRNA, erythromycin resistance mutations in these ribosomal proteins perturb the conformation of residues in domains II, III and V and affect the action of antibiotics known to interact with nucleotide residues in the peptidyl transferase center of domain V. These results support the hypothesis that ribosomal proteins interact with rRNA at multiple sites to establish its functionally active three-dimensional structure, and suggest that these antibiotic resistance mutations act by perturbing the conformation of rRNA.  相似文献   

14.
To investigate the physiological roles of translation initiation factor IF3 and ribosomal protein L20 inEscherichia coli, theinfC, rpmI andrpIT genes encoding IF3, L35 and L20, respectively, were placed under the control oflac promoter/operator sequences. Thus, their expression is dependent upon the amount of inducer isopropyl thiogalactoside (IPTG) in the medium. Lysogenic strains were constructed with recombinant lambda phages that express eitherrpmI andrplT orinfC andrpmI in trans, thereby allowing depletion of only IF3 or L20 at low IPTG concentrations. At low IPTG concentrations in the IF3-limited strain, the cellular concentration of IF3, but not L20, decreases and the growth rate slows. Furthermore, ribosomes run off polysomes, indicating that IF3 functions during the initiation phase of protein synthesis in vivo. During slow growth, the ratio of RNA to protein increases rather than decreases as occurs with control strains, indicating that IF3 limitation disrupts feedback inhibition of rRNA synthesis. As IF3 levels drop, expression from an AUU-infC-lacZ fusion increases, whereas expression decreases from an AUG-infC-lacZ fusion, thereby confirming the model of autogenous regulation ofinfC. The effects of L20 limitation are similar; cells grown in low concentrations of IPTG exhibited a decrease in the rate of growth, a decrease in cellular L20 concentration, no change in IF3 concentration, and a small increase in the ratio of RNA to protein. In addition, a decrease in 50S subunits and the appearance of an aberrant ribosome peak at approximately 41–43S is seen. Previous studies have shown that the L20 protein negatively controls its own gene expression. Reduction of the cellular concentration of L20 derepresses the expression of anrplT-lacZ gene fusion, thus confirming autogenous regulation by L20.  相似文献   

15.
The Bacillus stearothermophilus ribosomal protein S15 (BS15) binds a purine-rich three-helix junction motif in the central domain of 16S ribosomal RNA (rRNA) as well as a translational operator located in the 5'-untranslated region (5'-UTR) of its cognate messenger RNA (mRNA). An in-frame fusion between the 5'-UTR of the BS15 gene and beta-galactosidase (lacZ) was prepared, and tested for BS15-dependent translational repression of lacZ activity in Escherichia coli. The presence of BS15 in trans represses lacZ activity 24-fold. A series of detailed point mutations in BS15 were tested for their effects upon translational repression of lacZ activity. These point mutations demonstrated that the 5'-UTR-BS15 binding interface utilizes many of the same conserved amino acid residues implicated in the binding of BS15 to 16S rRNA. The data demonstrate that the S15 protein can bind to an RNA target motif based primarily upon appropriate minor groove and sugar-phosphate backbone contacts, irrespective of the specific RNA sequence.  相似文献   

16.
M F Brink  M P Verbeet    H A de Boer 《The EMBO journal》1993,12(10):3987-3996
The postulated central pseudoknot formed by regions 9-13/21-25 and 17-19/916-918 of 16S rRNA of Escherichia coli is phylogenetically conserved in prokaryotic as well eukaryotic species. This pseudoknot is located at the center of the secondary structure of the 16S rRNA and connects the three major domains of this molecule. We have introduced mutations into this pseudoknot by changing the base-paired residues C18 and G917, and the effect of such mutations on the ribosomal activity was studied in vivo, using a 'specialized' ribosome system. As compared with ribosomes having the wild-type pseudoknot, the translational activity of ribosomes containing an A, G or U residue at position 18 was dramatically reduced, while the activity of mutant ribosomes having complementary bases at positions 18 and 917 was at the wild-type level. The reduced translational activity of those mutants that are incapable of forming a pseudoknot was caused by their inability to form 70S ribosomal complexes. These results demonstrate that the potential formation of a central pseudoknot in 16S rRNA with any base-paired residues at positions 18 and 917 is essential to complete the initiation process.  相似文献   

17.
To investigate the physiological roles of translation initiation factor IF3 and ribosomal protein L20 inEscherichia coli, theinfC, rpmI andrpIT genes encoding IF3, L35 and L20, respectively, were placed under the control oflac promoter/operator sequences. Thus, their expression is dependent upon the amount of inducer isopropyl thiogalactoside (IPTG) in the medium. Lysogenic strains were constructed with recombinant lambda phages that express eitherrpmI andrplT orinfC andrpmI in trans, thereby allowing depletion of only IF3 or L20 at low IPTG concentrations. At low IPTG concentrations in the IF3-limited strain, the cellular concentration of IF3, but not L20, decreases and the growth rate slows. Furthermore, ribosomes run off polysomes, indicating that IF3 functions during the initiation phase of protein synthesis in vivo. During slow growth, the ratio of RNA to protein increases rather than decreases as occurs with control strains, indicating that IF3 limitation disrupts feedback inhibition of rRNA synthesis. As IF3 levels drop, expression from an AUU-infC-lacZ fusion increases, whereas expression decreases from an AUG-infC-lacZ fusion, thereby confirming the model of autogenous regulation ofinfC. The effects of L20 limitation are similar; cells grown in low concentrations of IPTG exhibited a decrease in the rate of growth, a decrease in cellular L20 concentration, no change in IF3 concentration, and a small increase in the ratio of RNA to protein. In addition, a decrease in 50S subunits and the appearance of an aberrant ribosome peak at approximately 41–43S is seen. Previous studies have shown that the L20 protein negatively controls its own gene expression. Reduction of the cellular concentration of L20 derepresses the expression of anrplT-lacZ gene fusion, thus confirming autogenous regulation by L20.  相似文献   

18.
Expression of rpsO, the gene encoding the small ribosomal protein S15, is autoregulated at the translational level by S15, which binds to its mRNA in a region overlapping the ribosome-binding site. By measuring the effect of mutations on the expression of a translational rpsO-lacZ fusion and the S15 binding affinity for the translational operator, the formation of a pseudoknot in the operator site in vivo is fully demonstrated and appears to be a prerequisite for S15 binding. The mutational analysis suggests also that specific determinants for S15 binding are located in very limited regions of the structure formed by the pseudoknot. It is deduced that a specific pseudoknot conformation is a key element for autoregulation.  相似文献   

19.
Translational control of ribosomal protein S15   总被引:5,自引:0,他引:5  
The expression of ribosomal protein S15 is shown to be translationally and negatively autocontrolled using a fusion within a reporter gene. Isolation and characterization of several deregulated mutants indicate that the regulatory site (the translational operator site) overlaps the ribosome loading site of the S15 messenger. In this region, three domains, each exhibiting a stem-loop structure, were determined using chemical and enzymatic probes. The most downstream hairpin carries the Shine-Dalgarno sequence and the initiation codon. Genetic and structural data derived from mutants constructed by site-directed mutagenesis show that the operator is a dynamic structure, two domains of which can form a pseudoknot. Binding of S15 to these two domains suggests that the pseudoknot could be stabilized by S15. A model is presented in which two alternative structures would explain the molecular basis of the S15 autocontrol.  相似文献   

20.
The RNA-binding ability of ribosomal protein L1 is of profound interest, since L1 has a dual function as a ribosomal structural protein that binds rRNA and as a translational repressor that binds its own mRNA. Here, we report the crystal structure at 2.6 A resolution of ribosomal protein L1 from the bacterium Thermus thermophilus in complex with a 38 nt fragment of L1 mRNA from Methanoccocus vannielii. The conformation of RNA-bound T.thermophilus L1 differs dramatically from that of the isolated protein. Analysis of four copies of the L1-mRNA complex in the crystal has shown that domain II of the protein does not contribute to mRNA-specific binding. A detailed comparison of the protein-RNA interactions in the L1-mRNA and L1-rRNA complexes identified amino acid residues of L1 crucial for recognition of its specific targets on the both RNAs. Incorporation of the structure of bacterial L1 into a model of the Escherichia coli ribosome revealed two additional contact regions for L1 on the 23S rRNA that were not identified in previous ribosome models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号