首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Raps  S. Vidal 《Oecologia》1998,114(4):541-547
The effects of Acremonium alternatum Gams (Ascomycotina, Clavicipitacea) on the development and nutrition of diamondback moth larvae Plutella xylostella L. (Lepidoptera, Plutellidae) were studied in the laboratory. All experiments were conducted before the endophyte reached the green parts of the plants; thus P. xylostella, a folivore, was not in direct contact with the endophyte. Larvae feeding on leaves of previously inoculated plants suffered from increased mortality, especially during the first 10 days of development. Likewise, during early development surviving larvae had a reduced relative growth rate (RGR), which, however, did not result in reduced pupal or adult weight. We found sexual differences in the food utilization efficiency; female P. xylostella progeny reacted more sensitively to endophytic infection of cabbage than male larvae. Female larvae feeding on leaves of endophyte-infested plants responded to reduced efficiency of conversion of ingested food (ECI) by increasing their relative consumption rate (RCR). The underlying mechanisms for these results are discussed in relation to changes in plant phytosterol metabolism which could account for reduced larval growth on inoculated cabbage plants. Our data suggest that unspecialized, soil-borne endophytic fungi, even when their association with the host plant is weak, can influence aboveground herbivore development and should be considered when investigating plant-insect interactions. Received: 3 November 1997 / Accepted 29 December 1997  相似文献   

2.
《Trends in plant science》2023,28(7):765-775
Although herbicide drift is a common side effect of herbicide application in agroecosystems, its effects on the ecology and evolution of natural communities are rarely studied. A recent shift to dicamba, a synthetic auxin herbicide known for ‘drifting’ to nontarget areas, necessitates the examination of drift effects on the plant–insect interactions that drive eco-evo dynamics in weed communities. We review current knowledge of direct effects of synthetic auxin herbicides on plant–insect interactions, focusing on plant herbivory, and discuss potential indirect effects, which are cascading effects on organisms that interact with herbicide-exposed plants. We end by developing a framework for the study of plant–insect interactions given drift, highlighting potential changes to plant developmental timing, resource quantity, quality, and cues.  相似文献   

3.
Peter A. Hambäck 《Oikos》2021,130(6):893-903
Temperature and precipitation are two major factors determining arthropod population densities, but the effects from these climate variables are seldom evaluated in the same study system and in combination with inter- and intraspecific density dependence. In this study, I used a 19 year time series on plant variables (shoot height and flowering incidence) and insect density in order to understand direct and indirect effects of climatic fluctuations on insect population densities. The study system includes two closely related leaf beetle species (Galerucella spp.) and a flower feeding weevil Nanophyes marmoratus attacking the plant purple loosestrife Lythrum salicaria. Results suggest that both intraspecific density dependence and weather variables affected Galerucella population densities, with interactive effects of rain and temperature on insect densities that depended on the timing relative to insect life cycles. In spring, high temperatures increased Galerucella densities only when combined with high rain, as low rain implies a high drought risk. Low temperatures are only beneficial if combined with little rain, as high rain cause chilly and wet conditions that are bad for insects. In summer, interactive effects of rain and temperature are different because high temperatures and little rain cause drought that induce wilting in plants, thus reducing food availability for the leaf feeding larvae. In contrast, the density of the flower feeding weevil was less affected by temperature and precipitation directly, and more indirectly interspecific density dependent effects through reduced resource availability caused by previous Galerucella damage.  相似文献   

4.
When plants are sequentially attacked by multiple herbivores, herbivore identity and host specialization can greatly influence the patterns of herbivore–herbivore and plant–herbivore interactions. However, how prior herbivory and the resulting induced plant responses potentially affect subsequent herbivores deserves further investigation. In this study, we conducted a common-garden experiment that manipulated sequential herbivory by the specialist caterpillar Gadirtha fusca Pogue (Lepidoptera: Nolidae) and the generalist caterpillar Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on Chinese tallow, Triadica sebifera (L.) Small (Euphorbiaceae). We tested how prior exposure to herbivores with different levels of host specialization affected the performance of subsequently arriving con- and heterospecifics, as well as plant growth and defense responses under subsequent herbivory. We found that prior exposure to the specialist G. fusca facilitated the performance of subsequent conspecifics, resulting in a significant decrease in the growth (height and stem diameter at ground level) of tallow plants. However, prior exposure to the generalist S. litura did not affect the feeding of subsequent con- or heterospecifics or the growth of tallow plants. Sequential herbivory by specialist and generalist conspecifics resulted in lower levels of tannins and flavonoids, respectively, in leaves of tallow plants, whereas sequential herbivory by the two species did not affect the levels of tannins or flavonoids, compared to a single damage event. We conclude that herbivore species-specific plant responses appear to be more important than herbivore identity or specialization in determining herbivore–herbivore interactions and plant responses to sequential herbivore attack.  相似文献   

5.
The impacts of climatic change on organisms depend on the interaction of multiple stressors and how these may affect the interactions among species. Consumer–prey relationships may be altered by changes to the abundance of either species, or by changes to the per capita interaction strength among species. To examine the effects of multiple stressors on a species interaction, we test the direct, interactive effects of ocean warming and lowered pH on an abundant marine herbivore (the amphipod Peramphithoe parmerong), and whether this herbivore is affected indirectly by these stressors altering the palatability of its algal food (Sargassum linearifolium). Both increased temperature and lowered pH independently reduced amphipod survival and growth, with the impacts of temperature outweighing those associated with reduced pH. Amphipods were further affected indirectly by changes to the palatability of their food source. The temperature and pH conditions in which algae were grown interacted to affect algal palatability, with acidified conditions only affecting feeding rates when algae were also grown at elevated temperatures. Feeding rates were largely unaffected by the conditions faced by the herbivore while feeding. These results indicate that, in addition to the direct effects on herbivore abundance, climatic stressors will affect the strength of plant–herbivore interactions by changes to the susceptibility of plant tissues to herbivory.  相似文献   

6.
Anthropogenic pollution causes oxidative stress in plants and reactive oxygen species (ROS) are diminished by antioxidative enzymes and small molecular antioxidants. Pollution may also affect the performance of plant-eating animals by increasing or decreasing their performance. The effects of pollution cannot be fully understood without knowledge of how pollution affects the interactions with the third trophic level, namely natural enemies and diseases of herbivores. In this study, we examined how long-term (19 yr) acid rain pollution affects (i) the oxidative responses in mountain birch foliage and (ii) the growth and immune responses of autumnal moth larvae. We found that pollution caused a 50% increase (p<0.05) in the peroxidase activities (PODs) in birch leaves whereas polyphenoloxidase (PPO) or catalase (CAT) activities were not affected, suggesting that PODs play an important role in the quenching of the oxidative stress in birches. In polluted trees, phenoloxidases probably acted as antioxidative not prooxidative enzymes, which was shown as positive relations between enzyme activities (PPO, CAT) and larval performance (pupal weights). Although acid rain pollution did not have any direct effect on either pupal weight or the length of larval period, the stronger acid rain treatment reduced slightly (6% in females) the encapsulation response of pupae. A decrease of this magnitude might be too small to have measurable effects on the incidence of moth outbreaks.  相似文献   

7.
Disturbances like biological invasions and fire may affect in unexpected ways plant-animal interactions. In northwestern Patagonia, introduced ungulates (cattle, horses and deers) are widespread and very common occupying more than 50% of forests and shrublands, widely affecting these habitats. In addition, fire play a major role in creating landscape patterns in this region. We evaluated whether fire modify the impacts of introduced ungulates on plant-animal interactions. In a mature forest (unburnt) and in an early post-fire area (burnt) we used structural equation modeling (SEM) to analyzed the impacts of introduced ungulates on insect herbivory, pollination and pre-dispersal seed predation on Berberis darwinii, one of the most common understory shrub of temperate forests. We found that the effects of cattle on pollination and fruit set depended on the habitat condition (i.e. unburnt or burnt). Introduced ungulates in unburnt forest decreased fruit set through a reduction on pollinator visits. Conversely, introduced ungulates in burnt forest increased pollinator visits and flower production without affecting fruit set. On the other hand, damage patterns (herbivory and fruit/seed predation) were unaffected by cattle in both forests types. Either, low browsing pressure or induction of plant defences may explain our results. This study illustrates how modifications on biotic and abiotic conditions produced by fire may affect in complex ways the effect of introduced ungulates on plant-animal interactions.  相似文献   

8.
9.
Edaphic factors can lead to differences in plant morphology and tissue chemistry. However, whether these differences result in altered plant–insect interactions for soil-generalist plants is less understood. We present evidence that soil chemistry can alter plant–insect interactions both directly, through chemical composition of plant tissue, and indirectly, through plant morphology, for serpentine-tolerant Mimulus guttatus (Phrymaceae). First, we scored floral display (corolla width, number of open flowers per inflorescence, and inflorescence height), flower chemistry, pollinator visitation and florivory of M. guttatus growing on natural serpentine and non-serpentine soil over 2 years. Second, we conducted a common garden reciprocal soil transplant experiment to isolate the effect of serpentine soil on floral display traits and flower chemistry. And last, we observed arrays of field-collected inflorescences and potted plants to determine the effect of soil environment in the field on pollinator visitation and florivore damage, respectively. For both natural and experimental plants, serpentine soil caused reductions in floral display and directly altered flower tissue chemistry. Plants in natural serpentine populations received fewer pollinator visits and less damage by florivores relative to non-serpentine plants. In experimental arrays, soil environment did not influence pollinator visitation (though larger flowers were visited more frequently), but did alter florivore damage, with serpentine-grown plants receiving less damage. Our results demonstrate that the soil environment can directly and indirectly affect plant–mutualist and plant–antagonist interactions of serpentine-tolerant plants by altering flower chemistry and floral display.  相似文献   

10.
1. The effect of gamma-irradiation of solutions of DNA and deoxyribonucleohistone (DNH) on their ability to prime the synthesis of RNA by DNA-dependent RNA polymerase has been studied. 2. The priming ability of both DNA and DNH decreased continuously with increasing radiation dose, but more rapidly with DNH. 3. These decreases have been compared with decreases in molecular weight and with the breakdown of the specific hydrogen-bonded structure of DNA. 4. It is concluded that a process was occurring during gamma-irradiation of DNH that, although involving a decrease in molecular weight, did not diminish and even enhanced its priming ability. This is consistent with previous physicochemical evidence that gamma-irradiation causes dissociation of histone from DNH.  相似文献   

11.
The continuing spread of exotic plants and increasing human land-use are two major drivers of global change threatening ecosystems, species and their interactions. Separate effects of these two drivers on plant–pollinator interactions have been thoroughly studied, but we still lack an understanding of combined and potential interactive effects. In a subtropical South African landscape, we studied 17 plant–pollinator networks along two gradients of relative abundance of exotics and land-use intensity. In general, pollinator visitation rates were lower on exotic plants than on native ones. Surprisingly, while visitation rates on native plants increased with relative abundance of exotics and land-use intensity, pollinator visitation on exotic plants decreased along the same gradients. There was a decrease in the specialization of plants on pollinators and vice versa with both drivers, regardless of plant origin. Decreases in pollinator specialization thereby seemed to be mediated by a species turnover towards habitat generalists. However, contrary to expectations, we detected no interactive effects between the two drivers. Our results suggest that exotic plants and land-use promote generalist plants and pollinators, while negatively affecting specialized plant–pollinator interactions. Weak integration and high specialization of exotic plants may have prevented interactive effects between exotic plants and land-use. Still, the additive effects of exotic plants and land-use on specialized plant–pollinator interactions would have been overlooked in a single-factor study. We therefore highlight the need to consider multiple drivers of global change in ecological research and conservation management.  相似文献   

12.
Abstract The search for pattern in the ecology and evolutionary biology of insect–plant associations has fascinated biologists for centuries. High levels of tropical (low-latitude) plant and insect diversity relative to poleward latitudes and the disproportionate abundance of host-specialized insect herbivores have been noted. This review addresses several aspects of local insect specialization, host use abilities (and loss of these abilities with specialization), host-associated evolutionary divergence, and ecological (including “hybrid”) speciation, with special reference to the generation of biodiversity and the geographic and taxonomic identification of “species borders” for swallowtail butterflies (Papilionidae). From ancient phytochemically defined angiosperm affiliations that trace back millions of years to recent and very local specialized populations, the Papilionidae (swallowtail butterflies) have provided a model for enhanced understanding of localized ecological patterns and genetically based evolutionary processes. They have served as a useful group for evaluating the feeding specialization/physiological efficiency hypothesis. They have shown how the abiotic (thermal) environment interacts with host nutrirional suitability to generate “voltinism/suitability” gradients in specialization or preference latitudinally, and geographical mosaics locally. Several studies reviewed here suggest strongly that the oscillation hypothesis for speciation does have considerable merit, but at the same time, some species-level host specializations may lead to evolutionary dead-ends, especially with rapid environmental/habitat changes involving their host plants. Latitudinal gradients in species richness and degree of herbivore feeding specialization have been impacted by recent developments in ecological genetics and evolutionary ecology. Localized insect–plant associations that span the biospectrum from polyphenisms, polymorphisms, biotypes, demes, host races, to cryptic species, remain academically contentious, with simple definitions still debated. However, molecular analyses combined with ecological, ethological and physiological studies, have already begun to unveil some answers for many important ecological/evolutionary questions.  相似文献   

13.
Insect–insect interactions can have implications for biological control programmes when multiple agent species are released. In many cases there is an increase in the efficacy when more than one species is used; however, there is a possibility that releasing an additional species into a programme could have a negative effect. The interactions between three arthropod agents of water hyacinth Eichhornia crassipes (Martius) Solms-Laubach, Eccritotarsus catarinensis (Carvalho), Neochetina bruchi Hustache and Neochetina eichhorniae Warner were investigated in an experiment to measure the impact that pairwise combinations of the insects may have on their performance. There was a significant interaction between the mirid E. catarinensis and the weevil N. eichhorniae, with significantly fewer weevil feeding scars when in combination with the mirid (approximately 0.2 scars per cm2) than when alone (approximately 0.4 scars per cm2). There were also slightly fewer petioles mined by N. eichhorniae when in combination with the mirid. Interestingly there was a negative interaction between the two weevil species when in combination, with the number of feeding scars being significantly lower per individual when the two species were in combination. None of the insects performed significantly better when in combination with another insect, however, the mirid was never negatively affected by the presence of either weevil species. The interactions observed between the insects tested were identifiable but subtle and are unlikely to have implications on establishment or performance of the insects in the introduced range, South Africa.  相似文献   

14.
Baculoviruses are food-borne microbial pathogens that are ingested by insects on contaminated foliage. Oxidation of plant-derived phenolics, activated by insect feeding, can directly interfere with infections in the gut. Since phenolic oxidation is an important component of plant resistance against insects, baculoviruses are suggested to be incompatible with plant defences. However, plants among and within species invest differently in a myriad of chemical and physical defences. Therefore, we hypothesized that among eight soybean genotypes, some genotypes would be able to maintain both high resistance against an insect pest and high efficacy of a baculovirus. Soybean constitutive (non-induced) and jasmonic acid (JA)-induced (anti-herbivore response) resistance was measured against the fall armyworm Spodoptera frugiperda (weight gain, leaf consumption and utilization). Indicators of phenolic oxidation were measured as foliar phenolic content and peroxidase activity. Levels of armyworm mortality inflicted by baculovirus (SfMNPV) did not vary among soybean genotypes when the virus was ingested with non-induced foliage. Ingestion of the virus on JA-induced foliage reduced armyworm mortality, relative to non-induced foliage, on some soybean genotypes. Baculovirus efficacy was lower when ingested with foliage that contained higher phenolic content and defensive properties that reduced armyworm weight gain and leaf utilization. However, soybean genotypes that defended the plant by reducing consumption rate and strongly deterred feeding upon JA-induction did not reduce baculovirus efficacy, indicating that these defences may be more compatible with baculoviruses to maximize plant protection. Differential compatibility of defence traits with the third trophic level highlights an important cost/trade-off associated with plant defence strategies.  相似文献   

15.
16.

Background

Current research has indicated that small natural compounds could interfere with β-amyloid fibril growth and have the ability to disassemble preformed folded structures. Ferulic acid (FA), which possesses both hydrophilic and hydrophobic moieties and binds to peptides/proteins, is a potential candidate against amyloidogenesis. The molecular mechanisms connected to this action have not been elucidated in detail yet.

Methods

Here the effects of FA on preformed fibrils are investigated by means of a concerted experimental–computational approach. Spectroscopic techniques, such as FTIR, fluorescence, size exclusion chromatography and confocal microscopy in combination with molecular dynamics simulations are used to identify those features which play a key role in the destabilization of the aggregates.

Results

Experimental findings highlight that FA has disruptive effects on the fibrils. The computational analysis suggests that dissociation of peptides from the amyloid superstructures could take place along the fibril axis and be primarily determined by the cooperative rupture of the backbone hydrogen bonds and of the Asp-Lys salt bridges.

Conclusion

FA clusters could induce a sort of stabilization and tightening of the fibril structure in the short term and its disruption in the long term, inhibiting further fibril re-assembly through FA screening effects.

General significance

The combination of experimental and computational techniques could be successfully used to identify the disrupting action of FA on preformed Aβ fibrils in water solution.  相似文献   

17.
Climate change is predicted to cause continued increases in global temperatures, greater variability in precipitation and in some cases, more frequent insect pest outbreaks. Here we seek to understand how abiotic and biotic stresses associated with climate change can affect plant-herbivore interactions in a model crop species (soybean, Glycine max (L.) Merr.) by answering three questions: (1) Do the combined effects of abiotic and biotic stresses associated with climate change cause synergistic negative effects on plant biomass? (2) Can abiotic stress affect resistance of plants to insect herbivores? (3) Does genetic variation in plant traits modify a plant’s response to stress? We performed three experiments in controlled growth environments using up to 51 soybean genotypes selected to vary in numerous traits associated with drought and resistance against pests (e.g., insect herbivores, nematodes, and pathogenic fungi), and up to 3 generalist-feeding herbivorous noctuid moth species (Helicoverpa zea, Heliothis virescens, and Spodoptera exigua) that commonly feed on soybean in North America. Drought and herbivory had the largest and the most consistent negative effects on plant performance, reducing the above- and below-ground biomass by 10-45 %, whereas increased temperature had little to no effect on plants. Drought also increased susceptibility to generalist noctuid herbivores, but these results varied dramatically in magnitude and direction among plant genotypes. Our experiments show that the effects of abiotic and biotic stress on soybean biomass were largely due to the additive effects of these stresses, and there exists substantial genetic variation in the soybean germplasm pool we studied that could be used as a source of parental stock in breeding new crops that can more effectively tolerate and resist the combined negative effects of insect herbivory and drought.  相似文献   

18.
Abstract

Traumatic brain injury (TBI) is a leading cause of morbidity and mortality during childhood. TBI enhances formation of reactive oxygen species that cause neuron damage and apoptosis. α-Lipoic acid (LA) is a free radical scavenger and biological antioxidant. We investigated the effects of LA treatment on the parietal and prefrontal cortex, and on the hippocampal regions of the brain in 7-day-old rat pups that had been subjected to contusion injury. Forty-two male rats were divided randomly into a control group, a TBI group and a TBI + LA treated group. LA was administered 30 min after TBI through an intragastric tube once daily for 2 days. Forty-eight hours after TBI, the animals were sacrificed and tissues were examined for apoptosis and density of neurons. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and active caspase-3 immunostaining were used to detect apoptosis. Glutathione peroxidase (GPx), superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels also were measured. Histological evaluation showed that LA treatment significantly reduced TBI-induced neuronal death in the hippocampus, prefrontal and parietal cortex; TUNEL- and caspase-3-positive cells also were decreased in the same regions. In addition, LA administration increased GPx and SOD activity in the prefrontal cortex. It appears that LA may be beneficial for TBI in rats.  相似文献   

19.
The autolysis of trypsin and α-chymotrypsin is accelerated in the presence of colloidal silica and glass surfaces. It is proposed that adsorption of the enzymes (favoured by electrostatic factors) results in a conformational change that renders the adsorbed enzyme more susceptible to proteolytic attack. Although the adsorbed enzymes are more susceptible to proteolysis, their activity towards low-molecular-weight substrates is not affected, indicating a relatively minor conformational change on adsorption. The rates of autolysis in solution (i.e. in `inert' vessels) are second-order for both trypsin and α -chymotrypsin, with rate constants of 13.0mol−1·dm3·s−1 for trypsin (in 50mm-NaCl at pH8.0 at 25°C) and 10.2mol−1·dm3·s−1 for α-chymotrypsin (in 0.1m-glycine at pH9.2 at 30°C). In glass vessels or in the presence of small areas of silica surface (as colloidal silica particles), the autolysis of both trypsin and α-chymotrypsin can show first-order kinetics. Under these conditions, saturation of the surface occurs and the fast surface proteolytic reaction controls the overall kinetic order. However, when greater areas of silica surface are present, saturation of the surface does not occur, and, since for a considerable portion of the adsorption isotherm the amount adsorbed is approximately proportional to the concentration in solution, second-order kinetics are again observed. A number of negatively charged macromolecules have been shown similarly to increase the rate of autolysis of trypsin: thus this effect, observed initially with glass and silica surfaces, is of more general occurrence when these enzymes adsorb on or interact with negatively charged surfaces and macromolecules. These observations explain the confusion in the literature with regard to the kinetics of autolysis of α-chymotrypsin, where first-order, second-order and intermediate kinetics have been reported. A further effect of glass surfaces and negatively charged macromolecules is to shift the pH–activity curve of trypsin to higher pH values, as a consequence of the effective decrease in pH in the `microenvironment' of the enzyme associated with the negatively charged surface or macromolecule.  相似文献   

20.
Shallow water bodies can exist in alternative stable states, a clear water state with high coverage of macrophytes or a turbid state with high phytoplankton biomass. The alternative equilibria hypothesis has been proposed to explain the occurrence of the alternative stable states (Scheffer et al., 1993)[1], which assumes that: 1),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号