首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dispersal mechanism of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) could affect predator–prey population dynamics and the spread of acaricide resistance. To investigate the propensity for spider mite migration in the field, the genetic structure of spider mite populations was studied in two apple orchards using five microsatellite markers. Adult female mites were collected from trees separated by approximately 10–24 m along a line covering a distance of about 100 m. The genetic data suggested that a high population density increased the migration rate among the breeding colonies within a single tree. Spatial autocorrelation analysis suggested a positive genetic structure in the first distance class within the two orchards, which might have been caused by crawling or short-distance aerial dispersal. Meanwhile, mites may also have a large-scale migration system that could cause a high level of gene flow and constrained isolation-by-distance or genetic clines within the approximately 100-m range of the study sites. Therefore, mites might aerially disperse over long distances on a scale of <100 m while also taking shorter trips among nearby trees within a distance of 10–24 m in the apple orchards.  相似文献   

2.
Several predatory mites have been found in association with the coconut mite, Aceria guerreronis Keifer, in northeast Brazil. However, the latter still causes damage to coconut in that region. The objectives of this work were to compare the frequencies of occurrence of Neoseiulus (Phytoseiidae) and Proctolaelaps (Melicharidae) species on standing and aborted coconuts in coastal Pernambuco State, northeast Brazil and to analyze their possible limitations as control agents of the coconut mite, based on evaluations of the restrictions they may have to access the microhabitat inhabited by the pest and their functional and reproductive responses to increasing densities of the latter. Neoseiulus baraki (Athias-Henriot) was found mostly on standing coconuts whereas Proctolaelaps bickleyi (Bram) was found mostly on aborted coconuts. Measurements of the entrance to the microhabitat occupied by the coconut mite, between the bracts and the subjacent fruit surface, showed that this different pattern of predator prevalence could be related to predator sizes, although other environmental factors could not be disregarded. Progressively higher predation rate of N. baraki was observed up to an experimental density that corresponded to 1,200 coconut mites per fruit, which is close to the average number determined in northeast Brazil, reducing slightly afterwards. Predation rate of P. bickleyi reduced consistently but slightly with increasing prey densities, but in absolute values, rates were always much higher than determined for N. baraki. The excessively high killing capacity of P. bickleyi, probably related to its high feeding requirement, may be detrimental in terms of stability. In fact, such high requirement for food suggests that P. bickleyi might not have a strong relation with the coconut mite and that the latter may not be its main food source under natural conditions. It is concluded that body sizes of both predators and the exceedingly high feeding requirement of P. bickleyi may limit their performance as control agents of the coconut mite.  相似文献   

3.
Endosymbiotic bacteria that potentially influence reproduction and other fitness-related traits of their hosts are widespread in insects and mites and their appeal to researchers’ interest is still increasing. We screened 20 strains of 12 agriculturally relevant herbivorous and predatory mite species for infection with Wolbachia, Cardinium and Spiroplasma by the use of PCR. The majority of specimens originated from Austria and were field collected or mass-reared. Eight out of 20 strains (40%) tested, representing seven of 12 mite species (58%), carried at least one of the three bacteria. We found Wolbachia in the herbivorous spider mites Tetranychus urticae and Bryobia rubrioculus, with the former also carrying Spiroplasma and the latter also carrying Cardinium. Cardinium was furthermore found in two populations of the predatory mite Euseius finlandicus and the spider mite Eotetranychus uncatus. Spiroplasma was detected in the predatory mite Neoseiulus californicus. All bacteria positive PCR products were sequenced, submitted to GenBank and analyzed in BLAST queries. We found high similarities to complete identity with bacteria found in the same and different mite species but also with bacteria found in insect species like ladybirds, butterflies and minute pirate bugs, Orius. We discuss the significance of potential (multiple) infections with the investigated bacteria for biological control.  相似文献   

4.
The eriophyoid mite Aceria guerreronis Keifer (Eriophyidae), commonly called the coconut mite, is a key pest of coconut fruits. Surveys conducted on coconut palms in Brazil revealed the predatory mites Neoseiulus paspalivorus DeLeon (Phytoseiidae) and Proctolaelaps bickleyi Bram (Ascidae) as the most commonly associated natural enemies of A. guerreronis on coconut fruits. However, virtually nothing is known about the life history of these two predators. We conducted laboratory experiments at 25 ± 0.1°C, 70–90% RH and 12:12 h L:D photoperiod to determine the life history characteristics of the two predatory mites when feeding on A. guerreronis and other potential food sources present on coconut fruits such as Steneotarsonemus furcatus DeLeon (Tarsonemidae), coconut pollen and the fungus Rhizopus cf. stolonifer Lind (Mucoraceae). In addition, the two-spotted spider mite Tetranychus urticae Koch (Tetranychidae) was tested for its suitability as prey. Both predators, N. paspalivorus and P. bickleyi, thrived on A. guerreronis as primary food source resulting in shorter developmental time (5.6 and 4.4 days, respectively), higher oviposition rate (1.7 and 7.0 eggs/female/day, respectively) and higher intrinsic rate of increase (0.232 and 0.489 per female/day, respectively) than on any other diet but were unable to develop or lay eggs when fed T. urticae. Coconut pollen and S. furcatus were adequate alternative food sources for N. paspalivorus and Rhizopus for P. bickleyi. We discuss the relevance of our findings for natural and biological control of the coconut mite A. guerreronis.  相似文献   

5.
The broad mite is a serious pest of a variety of crops worldwide. Several phytoseiid mites have been described to control these mites. However, broad mites are still one of the major pest problems on greenhouse pepper in South-eastern Spain. The generalist predatory mite A. swirskii is widely used against other pests of pepper plants such as thrips and whiteflies, the latter being a vector of broad mites. We assessed the potential of A. swirskii to control broad mites. The oviposition rate of A. swirskii on a diet of broad mites was lower than on a diet of pollen, but higher than oviposition in the absence of food. Population-dynamical experiments with A. swirskii on single sweet pepper plants in a greenhouse compartment showed successful control of broad mites.  相似文献   

6.
Seventeen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated for their pathogenicity against the tobacco spider mite, Tetranychus evansi Baker & Pritchard. In the laboratory all the fungal isolates were pathogenic to the adult female mites, causing mortality between 22.1 and 82.6%. Isolates causing more than 70% mortality were subjected to dose–response mortality bioassays. The lethal concentration causing 50% mortality (LC50) values ranged between 0.7×107 and 2.5×107 conidia ml−1. The lethal time to 50% mortality (LT50) values of the most active isolates of B. bassiana and M. anisopliae strains varied between 4.6 and 5.8 days. Potted tomato plants were artificially infested with T. evansi and treated with B. bassiana isolate GPK and M. anisopliae isolate ICIPE78. Both fungal isolates reduced the population density of mites as compared to untreated controls. However, conidia formulated in oil outperformed the ones formulated in water. This study demonstrates the prospects of pathogenic fungi for the management of T. evansi.  相似文献   

7.
Bacillus thuringiensis (Bt) toxins present a potential for control of pest mites. Information concerning the effect of Bt and its possible application to the biocontrol of synathropic mites is rare. The toxic effect of Bacillus thuringiensis var. tenebrionis producing Cry3A toxin was tested on the mites Acarus siro L., Tyrophagus putrescentiae (Schrank), Dermatophagoides farinae Hughes, and Lepidoglyphus destructor (Schrank) via feeding tests. Fifty mites were reared on Bt additive diets in concentrations that ranged from 0 to 100 mg g−1 under optimal conditions for their development. After 21 days, the mites were counted and the final populations were analyzed using a polynomial regression model. The Bt diet suppressed population growth of the four mite species. The fitted doses of Bt for 50% suppression of population growth were diets ranging from 25 to 38 mg g−1. There were no remarkable differences among species. Possible applications of Bt for the control of synanthropic mites are discussed.  相似文献   

8.
Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X 2 = 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X 2 = 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X 2 = 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.  相似文献   

9.
Eotetranychus carpini (Oudemans) is an important pest of grapevine (Vitis vinifera L.) in southern Europe. This mite is also found on a number of different plants, including Carpinus betulus L., which commonly occurs in stands and hedgerows bordering vineyards, where it may serve as a potential mite reservoir. The economic importance of this pest has motivated a number of studies aimed at investigating whether the mites found on V. vinifera and C. betulus are conspecific. The results obtained to date have been inconclusive. In this study, we used biological and molecular approaches to investigate this issue. First, we conducted host-switch experiments to test the ability of E. carpini to develop on an alternative host plant, using mite populations originally collected on either C. betulus or V. vinifera plants from the same area. Second, we investigated DNA-based differentiation using nucleotide sequences of the ITS1-5.8S-ITS2 region of the ribosomal DNA of individual E. carpini from the populations examined in our host-plant experiments. We also analyzed sequences of individuals collected in other regions (Italy and Slovenia) to estimate species variation. The results from our host-switch experiments suggest the differentiation of mites collected on the two hosts. Mites collected from C. betulus did not survive and reproduce on V. vinifera and vice versa. Our molecular work revealed significant genetic differentiation between the mites collected from the two hosts, but no evidence of genetic variation among specimens collected from the same host species. Our results indicate the existence of host races of E. carpini.  相似文献   

10.
The vector potential of the poultry red mite, Dermanyssus gallinae De Geer (Acari: Dermanyssidae), in relation to chicken erysipelas was investigated under experimental conditions. Chickens were inoculated intramuscularly with the bacterium Erysipelothrix rhusiopathiae, and mites were allowed to feed on the inoculated chickens for 5 days. After 20 days of starvation, the mites were allowed to feed on healthy chickens to enable transmission of bacteria. Blood samples were collected from the birds and analysed for the presence of E. rhusiopathiae, and ELISA tests were performed for seropositivity. The internal presence of E. rhusiopathiae in the mites after feeding of inoculated birds was also investigated. It could not be demonstrated that mites take up and transmit E. rhusiopathiae under the experimental conditions described. However, since there are case reports as well as other in vitro studies indicating the potential of D. gallinae to act as a reservoir and potential vector for infections agents, we cannot exclude the possibility that the red poultry mite transmits E. rhusiopathiae between chickens under field conditions.  相似文献   

11.
Hericia sanukiensis (Acari, Algophagidae) is a species of tree sap mite which has been newly discovered in the sap flux of oak trees (Quercus acutissima). In this study, we have clarified the life history of H. sanukiensis at the onset of sap exudation in spring, overwintering deutonymphs molt to tritonymphs as their molting is exacerbated by the sugar contained in the tree sap, and develop to adulthood and reproduce. The mite colony develops as long as the sap continues to exude during the spring and summer. In this period, most of the protonymphs develop into tritonymphs directly bypassing the deutonymphal stage completely. Facultative deutonymphs which arise in the summer season are phoretic morphs. They attach to coleopteran insects, especially of the family Nitidulidae, as carriers by which to disperse. In autumn (when sap exudation terminates), most of the protonymphs molt to non-phoretic deutonymphs. In winter (without sap exudation), the mite colony is composed only of non-phoretic deutonymphs.  相似文献   

12.
Nests of social insects are usually inhabited by various mite species that feed on pollen, other micro-arthropods or are parasitic. Well-known negative effects of worldwide economic importance are caused by mites parasitizing honeybee colonies. Lately, attention has focused on the endoparasitic mite Locustacarus buchneri that has been found in commercial bumblebees. However, little is known of other mites associated with commercial bumblebee nests. Transportation of commercial bumblebee colonies with unwanted residents may introduce foreign mite species to new localities. In this study, we assessed the prevalence and species composition of mites associated with commercial bumblebee nests and determined if the mites are foreign species for Poland and for Europe. The study was conducted on 37 commercial bumblebee nests from two companies (Dutch and Israeli), originating from two greenhouses in southern Poland, and on 20 commercial bumblebee colonies obtained directly from suppliers. The species composition and abundance of mites inhabiting commercial bumblebee nests were determined. Seven mite species from three families were found in nests after greenhouse exploitation. The predominant mite species was Tyrophagus putrescentiae (Acaridae) that was a 100-fold more numerous than representatives of the family Laelapidae (Hypoaspis marginepilosa, H. hyatti, H. bombicolens). Representatives of Parasitidae (Parasitellus fucorum, P. crinitus, P. ignotus) were least numerous. All identified mite species are common throughout Europe, foreign species were not found. Mites were not detected in nests obtained directly from suppliers. We conclude that probably bumblebee nests are invaded by local mite species during greenhouse exploitation.  相似文献   

13.
Reproduction in Varroa destructor exclusively takes place within the sealed honey bee brood cell and is, therefore, limited by the duration of the postcapping period. Oogenesis, ontogenetic development and mating must be optimized to ensure the production of as many mated daughter mites as possible. One adult male mite has to mate with up to five sister mites and transfer 30–40 spermatozoa to each female. We analyzed the production and transfer of male spermatozoa during a reproductive cycle by counting all spermatozoa in the genital tracts of the male and daughter mites in 80 worker brood cells at defined times after cell capping. We could show that spermatozoa production in male mites is an ongoing process throughout their adult lifetime starting after the adult molt. The spermatozoa are transferred to the females in an early non-capacitated stage and require further maturation within the female’s genital tract. Our study points out that a Varroa male has at any time in the brood cell enough spermatozoa to inseminate all daughter mites but does not waste energy in producing a big surplus. In total one male produced, on average, 125 spermatozoa during a reproductive cycle in worker brood which is sufficient for successful matings with at least three daughter mites. Spermiogenesis in Varroa males represents therefore a further adaptation to the limited time available for reproduction.  相似文献   

14.
Sex ratio distorting endosymbionts induce reproductive anomalies in their arthropod hosts. They have recently been paid much attention as firstly texts of evolution of host-symbiont relationships and secondly potential biological control agents to control arthropod pests. Among such organisms, Wolbachia and Cardinium bacteria are well characterized. This study aims at probing such bacteria in the Osmia community to evaluate their potential utilization to control arthropod pests. Among 17 PCR tested species, Osmia cornifrons and a parasitic fly are infected with Wolbachia and a mite species is infected with Cardinium. Phylogenetic tree analyses suggest that horizontal transfer of the bacteria occurred between phylogenetically distant hosts.  相似文献   

15.
Since its first contact with Apis mellifera, the population dynamics of the parasitic mite Varroa destructor varies from one region to another. In many regions of the world, apiculture has come to depend on the use of acaricides, because of the extensive damage caused by varroa to bee colonies. At present, the mite is considered to contribute to the recent decline of honey bee colonies in North America and Europe. Because in tropical climates worker brood rearing and varroa reproduction occurs all year round, it could be expected that here the impact of the parasite will be even more devastating. Yet, this has not been the case in tropical areas of South America. In Brazil, varroa was introduced more than 30 years ago and got established at low levels of infestation, without causing apparent damage to apiculture with Africanized honey bees (AHB). The tolerance of AHB to varroa is apparently attributable, at least in part, to resistance in the bees. The low fertility of this parasite in Africanized worker brood and the grooming and hygienic behavior of the bees are referred as important factors in keeping mite infestation low in the colonies. It has also been suggested that the type of mite influences the level of tolerance in a honey bee population. The Korea haplotype is predominant in unbalanced host-parasite systems, as exist in Europe, whereas in stable systems, as in Brazil, the Japan haplotype used to predominate. However, the patterns of varroa genetic variation have changed in Brazil. All recently sampled mites were of the Korea haplotype, regardless whether the mites had reproduced or not. The fertile mites on AHB in Brazil significantly increased from 56% in the 1980s to 86% in recent years. Nevertheless, despite the increased fertility, no increase in mite infestation rates in the colonies has been detected so far. A comprehensive literature review of varroa reproduction data, focusing on fertility and production of viable female mites, was conducted to provide insight into the Africanized bee host-parasite relationship.  相似文献   

16.
Mites in the genus Tropilaelaps (Acari: Laelapidae) are ectoparasites of the brood of honey bees (Apis spp.). Different Tropilaelaps subspecies were originally described from Apis dorsata, but a host switch occurred to the Western honey bee, Apis mellifera, for which infestations can rapidly lead to colony death. Tropilaelaps is hence considered more dangerous to A. mellifera than the parasitic mite Varroa destructor. Honey bees are also infected by many different viruses, some of them associated with and vectored by V. destructor. In recent years, deformed wing virus (DWV) has become the most prevalent virus infection in honey bees associated with V. destructor. DWV is distributed world-wide, and found wherever the Varroa mite is found, although low levels of the virus can also be found in Varroa free colonies. The Varroa mite transmits viral particles when feeding on the haemolymph of pupae or adult bees. Both the Tropilaelaps mite and the Varroa mite feed on honey bee brood, but no observations of DWV in Tropilaelaps have so far been reported. In this study, quantitative real-time RT-PCR was used to show the presence of DWV in infested brood and Tropilaelaps mercedesae mites collected in China, and to demonstrate a close quantitative association between mite-infested pupae of A. mellifera and DWV infections. Phylogenetic analysis of the DWV sequences recovered from matching pupae and mites revealed considerable DWV sequence heterogeneity and polymorphism. These polymorphisms appeared to be associated with the individual brood cell, rather than with a particular host.  相似文献   

17.
Three mite species are frequently found on vegetable crops in Italy: the pest Tetranychus urticae Koch (Acari: Tetranychidae), the predator Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) and the unspecialised feeder Tydeus californicus (Banks) (Acari: Tydeidae). In laboratory trials, the direct and residual effects of six insecticides recommended for the control of aphids, whiteflies and thrips in vegetable crops, (Biopiren® plus (pyrethrins), Confidor® (imidacloprid), Oikos® (azadirachtin), Plenum® (pymetrozine), Naturalis® (Beauveria bassiana) and Rotena® (rotenone)), were evaluated for the three mite species. All the products affected the mites and their effect was often favourable towards T. urticae and unfavourable towards N. californicus and T. californicus. Rotenone was more toxic to eggs than females of T. urticae. It was highly toxic to N. californicus and caused the death of all treated females of T. californicus. Pyrethrins and imidacloprid increased T. urticae fecundity, but decreased fecundity of N. californicus. Imidacloprid decreased T. californicus fecundity more than pyrethrins. Beauveria bassiana was not toxic to T. urticae and T. californicus, but induced high mortality in the progeny of treated females of N. californicus. Azadirachtin and pymetrozine were the least toxic to T. urticae and N. californicus, but decreased production of larvae in T. californicus. Implications for integrated pest management on vegetables are discussed.  相似文献   

18.
Although mitochondrial DNA mapping of Varroa destructor revealed the presence of several haplotypes, only two of them (Korean and Japanese haplotypes) were capable to infest Apis mellifera populations. Even though the Korean haplotype is the only one that has been reported in Argentina, these conclusions were based on mites sampled in apiaries from a specific geographical place (Buenos Aires province). To study mites from several sites of Argentina could reveal the presence of the Japanese genotype, especially considering sites near to Brazil, where Japanese haplotype was already detected. The aim of this work was to study the genetic structure of V. destructor populations from apiaries located in various provinces of Argentina, in order to determine the presence of different haplotypes. The study was carried out between January 2006 and December 2009. Phoretic adult Varroa mites were collected from honey bee workers sampled from colonies of A. mellifera located in Entre Ríos, Buenos Aires, Corrientes, Río Negro, Santa Cruz and Neuquén provinces. Twenty female mites from each sampling site were used to carry out the genetic analysis. For DNA extraction a nondestructive method was used. DNA sequences were compared to Korean haplotype (AF106899) and Japanese haplotype (AF106897). All DNA sequences obtained from mite populations sampled in Argentina, share 98% of similitude with Korean Haplotype (AF106899). Taking into account these results, we are able to conclude that Korean haplotype is cosmopolite in Argentina.  相似文献   

19.
The bacterium Serratia marcescens isolated from surface-sterilised Psoroptes cuniculi was found sensitive to the antibiotic Amikacin. Mites placed in this antibiotic for 48–72 h and then washed by centrifugation were found to be alive and S. marcescens-free. Two experimental infestations were undertaken in order to verify the ability of the S. marcescens-free mites to infect and to give ear skin lesions in healthy rabbits and to evaluate the differential ability of the S. marcescens-free and S. marcescens-infected mites to give ear skin lesions. All rabbits were found to be infested, but only rabbits infested with S. marcescens-free mites presented crusts in their ears, whereas mites and/or eggs were only detected in the ear cerumen of all rabbits infested with S. marcescens-infected mites. S. marcescens was isolated only from P. cuniculi mites taken from these latter rabbits. Results indicate that P. cuniculi mites do not need S. marcescens to live and to be able to infest a healthy rabbit. In addition, S. marcescens was not isolated from eggs and newly born larvae of S. marcescens-infected P. cuniculi, demonstrating that in a population of P. cuniculi this bacterium is not transmitted transovarially.  相似文献   

20.
Hermes copper butterfly (Lycaena [Hermelycaena] hermes) is a rare species inhabiting the coastal sage scrub adjacent to San Diego, CA USA. Conservation groups and wildlife agencies recognize this species is threatened by habitat loss due to urbanization and recent wildfires extirpating local populations. To assess the status of the Hermes copper, we summarize the literature concerning taxonomy, distribution, and ecology, as well as present original distributional and ecological data. Adults were sampled by presence/absence surveys, Pollard Walks, and mark-release-recapture. The current distribution is reduced from historic ranges, specifically in extreme southern and northern San Diego County. Recent wildfires in 2003 and 2007 led to the extirpation of many populations, with only one post-fire recolonization documented. Adult emergence dates ranged from mid-May to early June, while densities varied from five to nine-fold among years based on peak abundance and mark-release-recapture estimates, respectively. We observed significantly more males; most were territorial and exhibit a relatively sedentary behavior. The median dispersal range was 25.8 and 11.3 m, and the median minimum distance traveled was 34.4 and 17.6 m at Rancho Jamul Ecological Reserve and Hollenbeck Canyon Wildlife Area, respectively. The longest recorded movement by an individual was 1,132.0 m. Post-fire habitat recovery and the ability to move across the landscape are essential for the Hermes copper to persist in an increasingly dynamic and fragmented coastal sage scrub habitat. Therefore, we need to develop a better understanding of habitat requirements and connectivity of populations for the long-term management and conservation of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号