首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nine doses of 1.5 Gy given to mice with one shielded leg result in very similar perturbations in shielded marrow (CFU-s kinetics whatever the source of radiation (X or gamma rays). At the time of the ninth irradiation, the size of the shielded CFU-s compartment is reduced to 75% of control level. After 15 min it decreases to 47% and, 1 day later, remains below the pre-ninth irradiation level (62% of control level) in spite of two significant peaks of CFU-s in DNA synthesis, at 1 and 8 hr after the ninth irradiation. For acceptable fitting to experimental data, computer simulations make it necessary to assume that a fraction of shielded marrow CFU-s is not capable of entering the cell cycle after the treatment. This is not explainable by defects in the stimulators of CFU-s proliferation secreted by shielded haemopoietic tissue because their production and their efficacy are demonstrated to be normal after the nine exposures. The incomplete recovery of the shielded CFU-s pool from proliferating CFU-s can be attributed to a loss in CFU-s by differentiation at birth.  相似文献   

2.
The level of mobilizable 9-day colony-forming units (CFU-s), which represents a constant fraction of the normal mouse bone marrow CFU-s pool, was assayed in BDF1 mice with perturbed hemopoiesis (i.e., during increased turnover of CFU-s or increased CFU-s traffic after irradiation). After low-level irradiation, regeneration of the mobilizable CFU-s fraction was significantly slower than that of bone marrow CFU-s. Depletion of the mobilizable CFU-s pool was observed if a permanently increased outflow of CFU-s from the bone marrow was induced by endotoxin injection. After 40% withdrawal of the blood volume, the mobilizable CFU-s pool expanded marginally. Assuming that the level of mobilizable CFU-s is a consequence of production and outflow from the bone marrow compartment, changes in the pool size of mobilizable CFU-s may be a sensitive indicator of balanced or unbalanced hemopoiesis.  相似文献   

3.
The proportion of haematopoietic stem cells (CFU-s) engaged in DNA synthesis was determined by means of the [3H]-thymidine [( 3H]TdR) suicide technique during recovery of bone marrow from the damage caused by a sublethal total body irradiation. In contrast with previous reports the [3H]TdR suicide rate was not permanently increased. It was observed that CFU-s passed through S phase in synchronous waves, following a dose of irradiation of 1.5 Gy. After a dose of 2.6 Gy, there was only one initial wave of increased CFU-s sensitivity to the action of [3H]TdR. Following the depression occurring 26 hr after the irradiation with 2.6 Gy, the proportion of CFU-s killed by the [3H]TdR was permanently increased until 5-6 days after irradiation. Thereafter large differences in the [3H]TdR suicide data were observed among individual mice. Evidence was obtained that individual mice, which had been irradiated by a dose of 2.6 Gy 8-9 days before, had identical values of the CFU-s [3H]TdR suicide rate in the bone marrow from different bones of the lower extremities. The recurrence of the synchronous waves in CFU-s passage through the cell cycle was recorded when the CFU-s population regenerated to only about 10% of its normal value. These waves were obviously not related to a particular time of the day and, consequently, they did not represent the circadian rhythm. It is concluded that the synchronous waves in which CFU-s proliferation occurred reflected the action of the control mechanism on CFU-s proliferation. This mechanism should be endowed with an important systemic component besides locally operating factors.  相似文献   

4.
Abstract. The proportion of haematopoietic stem cells (CFU-s) engaged in DNA synthesis was determined by means of the [3H]-thymidine ([3H]TdR) suicide technique during recovery of bone marrow from the damage caused by a sublethal total body irradiation. In contrast with previous reports the [3H]TdR suicide rate was not permanently increased. It was observed that CFU-s passed through S phase in synchronous waves, following a dose of irradiation of 1.5 Gy. After a dose of 2.6 Gy, there was only one initial wave of increased CFU-s sensitivity to the action of [3H]TdR. Following the depression occurring 26 hr after the irradiation with 2.6 Gy, the proportion of CFU-s killed by the [3H]TdR was permanently increased until 5-6 days after irradiation. Thereafter large differences in the [3H]TdR suicide data were observed among individual mice. Evidence was obtained that individual mice, which had been irradiated by a dose of 2.6 Gy 8-9 days before, had identical values of the CFU-s [3H]TdR suicide rate in the bone marrow from different bones of the lower extremities. the recurrence of the synchronous waves in CFU-s passage through the cell cycle was recorded when the CFU-s population regenerated to only about 10% of its normal value. These waves were obviously not related to a particular time of the day and, consequently, they did not represent the circadian rhythm. It is concluded that the synchronous waves in which CFU-s proliferation occurred reflected the action of the control mechanism on CFU-s proliferation. This mechanism should be endowed with an important systemic component besides locally operating factors.  相似文献   

5.
Antiserum raised against a mouse mast cell line (FMP1) reacts with 90% to 100% of spleen colony-forming units (CFU-s), granulocyte/macrophage colony-forming cells (CFC-gm), erythroid burst-forming units (BFU-e), and 15% of nucleated marrow cells, using a complement-dependent cytotoxicity assay. We demonstrated that bone marrow, spleen, or thymus cells are able to absorb this activity from the antiserum. Although mouse brain cells have low reactivity with anti-FMP1 serum, the cytolysis level was reduced to background when antiserum was absorbed with brain cells. In addition, colony formation by marrow CFU-s, CFC-gm, and BFU-e was no longer prevented when the cells were incubated with brain-absorbed anti-FMP1 serum and complement. These findings suggest the presence of brain-associated antigens on CFU-s, CFC-gm, and BFU-e. To test whether a CFU-s accessory cell population in marrow is affected by treatment with anti-FMP1 serum and complement, antibody-treated marrow cells were mixed with large numbers of thymocytes and injected into recipient mice. Colony formation was not altered, indicating that the antiserum reacted directly with antigens on CFU-s and not on CFU-s accessory cells.  相似文献   

6.
A simulation model of the CFU-s population is used to interpret data from experimental studies of bone marrow recovery after irradiation. The model includes an original hypothesis that the proliferation rate in the CFU-s population depends on the number of DNA-synthesizing CFU-s. It is assumed that the DNA-synthesizing CFU-s produce a factor in the presence of which CFU-s enter the resting state G0 after mitosis and remain there for prolonged periods of time. The model can adequately reproduce complex CFU-s kinetics observed after severe damage caused by irradiation with a unique set of parameters.  相似文献   

7.
Abstract. A simulation model of the CFU-s population is used to interpret data from experimental studies of bone marrow recovery after irradiation. the model includes an original hypothesis that the proliferation rate in the CFU-s population depends on the number of DNA-synthesizing CFU-s. It is assumed that the DNA-synthesizing CFU-s produce a factor in the presence of which CFU-s enter the resting state Go after mitosis and remain there for prolonged periods of time. the model can adequately reproduce complex CFU-s kinetics observed after severe damage caused by irradiation with a unique set of parameters.  相似文献   

8.
Functional properties of mouse haemopoietic spleen colony-forming cells, enriched 40- to 80-fold, from normal bone marrow were studied. It was found that: (1) the number of partially purified CFU-s (colony forming unit-spleen) required to rescue lethally irradiated mice was similar to the number of normal unfractionated bone marrow CFU-s giving the same level of protection; (2) the homing of partially purified CFU-s was similar to that of CFU-s from unfractionated bone marrow; (3) the regeneration of CFU-s in spleen was similar for enriched and unfractionated cell populations between 4 and 11 days after transplantation. In contrast, the rate of regeneration of CFU-s in femur was slower with enriched progenitor cells than with unfractionated bone marrow. The growth rate in femur, however, could be restored to normal by injecting freshly isolated syngeneic thymocytes with the enriched CFU-s population. The results indicate that the partially purified CFU-s are by themselves functionally normal and show that the rate of CFU-s repopulation in bone marrow can be affected by cell types other than spleen colony-forming cells.  相似文献   

9.
We investigated a haemopoietic stromal defect, in mice heterozygous for the Slj allele, during haemopoietic stress induced by treatment with bacterial lipopolysaccharides (LPS) or lethal total body irradiation (TBI) and bone-marrow cell (BMC) reconstitution. Both treatments resulted in a comparable haemopoietic stem cell (CFU-s) proliferation in Slj/+ and +/+ haemopoietic organs. There was no difference in committed haemopoietic progenitor cell (BFU-e and CFU-G/M) kinetics after TBI and +/+ bone-marrow transplantation in Slj/+ and +/+ mice. The Slj/+ mice were deficient in their ability to support macroscopic spleen colony formation (65% of +/+ controls) as measured at 7 and 10 days after BMC transplantation. However, the Slj/+ spleen colonies contained the same number of BFU-E and CFU-G/M as colonies from +/+ spleens, while their CFU-s content was increased. On day 10 post-transplantation, the macroscopic 'missing' colonies could be detected at the microscopic level. These small colonies contained far fewer CFU-s than the macroscopic detectable colonies. Analysis of CFU-s proliferation-inducing activities in control and post-LPS sera revealed that Slj/+ mice are normal in their ability to produce and to respond to humoral stem-cell regulators. We postulate that Slj/+ mice have a normal number of splenic stromal 'niches' for colony formation. However, 35% of these niches is defective in its proliferative support.  相似文献   

10.
Abstract In the early periods (7–9 days) after haemopoietic cell injection, colonies produced by CFU-s and by their progeny are identified in the spleen, while at later periods (11 days after injection) only spleen nodules produced by CFU-s persist. the increase in the suicide values of CFU-s after sublethal (2 Gy) irradiation of mice is associated with a higher proliferation rate of precursors of transitory spleen colonies, but not of CFU-s, as measured by different suicide techniques. During the log-phase of cell growth in a lethally irradiated recipient, the injected CFU-s and CFU-tr proliferate at a higher rate. Active proliferation of CFU-s and CFU-tr has been demonstrated in long-term bone-marrow cultures by the hydroxyurea in-vitro suicide assay. CFU-tr may be the cause of artifactual effects during measurement of haemopoietic stem-cell cycling by CFU-s suicide methods.  相似文献   

11.
Abstract. Changes in the number of haemopoietic stem cells (CFU-s) were studied in rats during the recovery day and selected post-recovery days after an 18–19-day flight on biosatellites Cosmos 936 and Cosmos 1129 . There was a decrease in the CFU-s number of the bone marrow of rats on the recovery day. On the 6th day post-recovery the CFU-s number was still depressed, while on the 25th day post-recovery it was elevated above control value. The differentiation ratio of transplanted bone marrow cells was not altered by space flight.  相似文献   

12.
We investigated a haemopoietic stromal defect, in mice heterozygous for the Slj allele, during haemopoietic stress induced by treatment with bacterial lipopolysaccharides (LPS) or lethal total body irradiation (TBI) and bone-marrow cell (BMC) reconstitution. Both treatments resulted in a comparable haemopoietic stem cell (CFU-s) proliferation in Slj/+ and +/+ haemopoietic organs. There was no difference in committed haemopoietic progenitor cell (BFU-e and CFU-G/M) kinetics after TBI and +/+ bone-marrow transplantation in Slj/+ and +/+ mice. the Slj/+ mice were deficient in their ability to support macroscopic spleen colony formation (65% of +/+ controls) as measured at 7 and 10 days after BMC transplantation. However, the Slj/+ spleen colonies contained the same number of BFU-E and CFU-G/M as colonies from +/+ spleens, while their CFU-s content was increased. On day 10 post-transplantation, the macroscopic ‘missing’ colonies could be detected at the microscopic level. These small colonies contained far fewer CFU-s than the macroscopic detectable colonies. Analysis of CFU-s proliferation-inducing activities in control and post-LPS sera revealed that Slj/+ mice are normal in their ability to produce and to respond to humoral stem-cell regulators. We postulate that Slj/+ mice have a normal number of splenic stromal ‘niches’ for colony formation. However, 35% of these niches is defective in its proliferative support.  相似文献   

13.
杜勋湘  徐有恒 《生理学报》1989,41(6):597-601
用组胺H_2受体拮抗剂(甲氰咪胍或呋喃硝胺)处理正常和亚致死量γ-射线照射小鼠,探讨正常体内造血和再生骨髓中造血重建与组胺受体的关系。发现非毒性剂量的甲氰咪胍对正常小鼠骨髓多能造血干细胞(CFU-s)无抑制作用,但可抑制小鼠体内粒单系祖细胞(CFU-GM)的生长和亚致死量照射后CFU-s产率的恢复。组胺可能与骨髓的再生有关,组胺H_2受体拮抗剂可抑制骨髓的造血重建。  相似文献   

14.
A competitive repopulation assay utilizing chromosome markers was used to assay the reconstituting potential of hematopoietic populations. The test populations consisted of tibial murine marrow locally irradiated with doses ranging from 1.5 Gy to 8.5 Gy and of marrow generated from either murine splenic or marrow stem cells. The purpose of this assay was to assess the innate proliferative potential and microenvironmental influences on the ability to repopulate. Regardless of origin, spleen repopulating ability consistently agreed with spleen colony-forming unit (CFU-s) content. Doses of radiation from 5 Gy to 8.5 Gy diminished, by a factor of 2, the ability to repopulate marrow despite maintenance of CFU-s levels. Marrow generated from splenic stem cells had one-fifth the repopulating ability of marrow derived from marrow stem cells, even though CFU-s levels were equivalent. The results imply that the splenic environment can only maintain stem cells at the level of the CFU-s, even if the stem cells were originally of higher quality, and that their original potential cannot be regained in a marrow environment. Nevertheless, the marrow can maintain more primitive stem cells, but this reserve is drained to support CFU-s levels.  相似文献   

15.
Abstract Abstract. A tentative characterization of haemopoietic stem cells with respect to their organ distribution, seeding fraction and colony formation in the spleen, radiosen-sitivity and humoral regulation was attempted in mice heterozygous for the mutant allele SlJ and in their normal littermates. SlJ/+ mice were characterized by a deficient CFU-s content of the blood and spleen and had slightly lower femoral CFU-s numbers. This CFU-s distribution could not be explained by differences in seeding efficiency ‘f’ between CFU-s of SlJ/+ and +/+ origin in lethally irradiated recipients used in the CFU-s assay. the seeding fraction of CFU-s of +/+ origin did not differ in +/+ and SlJ/+ recipients. However, in irradiated SIJ/+ recipient mice a 30% decrease was observed in the number of the colonies derived from splenic and femoral CFU-s of both +/+ and SlJ/+ origin. the serum level of SHSF (splenic haemopoiesis stimulating factor) was decreased in SlJ/+ mice, but significantly increased in Sl/Sld mice, as compared to their respective normal +/+ littermates. Endogenous colony formation in SlJ/+ spleens was deficient in comparison to that observed in +/+ spleens, and distinct sex differences were observed. However, mutant and normal CFU-s from spleen and bone marrow had a similar survival following in-vitro y irradiation. Femurs and spleens of both SlJ/+ and +/+ origin were implanted into both SlJ/+ and +/+ hosts. Six weeks later the SlJ/+ grafts contained less CFU-s than the +/+ grafts. These data show that the splenic stroma of SlJ/+ mice is not defective in its capacity to lodge injected CFU-s but is deficient in its ability to maintain CFU-s under ‘steady-state’ conditions and stimulate their colony formation in a ‘perturbed state’. Some of the characteristics of SlJ/+ mice segregate them from Sl/Sld mice, i.e. a deficient splenic CFU-s content, normal seeding fractions ‘f’ of CFU-s from spleen and bone marrow in the presence of an almost compensated anemia, and decreased serum levels of SHSF. the study of the SlJ trait may be a useful extension of the current Sl/Sld model for exploration of hereditary defects in haematopoietic stroma.  相似文献   

16.
Abstract. The proliferation rate of haemopoietic stem cells (CFU-s) was followed after sublethal total body irradiation with 1.5 Gy. The [3H]-thymidine suicide technique was used to measure the CFU-s proliferation rate. The measurements extended from 10 min after irradiation up to 21 days. The CFU-s did not enter the DNA synthesis period (S-phase) shortly after irradiation, as had been previously suggested, but did so only with a delay of 14–16 hr. A large scatter of results was explained by an oscillatory pattern in CFU-s proliferation. The CFU-s prepared for cell division in synchronized waves, with a period of 20–22 hr.  相似文献   

17.
Animals infected with conventional anaemia (FVA) or polycythemia-inducing (FVP) strains of the Friend virus develop lethal erythroleukaemia. A variant strain, RFV, induces an initially identical disease except that it spontaneously regresses in 50% of infected mice. To determine whether pluripotent stem cells as measured by spleen colony forming units (CFU-s) in leukaemic mice are productively infected with virus and whether their infection influences the outcome of the disease, we tested CFU-s from leukaemic mice for susceptibility to cytotoxicity by monospecific antiviral gp70 antiserum. Spleen CFU-s from progressively leukaemic (FVP, FVA and RFV) mice were productively infected with virus. CFU-s in RFV progressors became infected by 40 days post-virus inoculation. FVA and FVP progressors became infected between 15 and 21 days post virus. Infection of CFU-s was accompanied by an increase in the proportion of replicating (S phase) CFU-s in these populations. Spleen CFU-s from fully regressed RFV regressor mice were uninfected and remained so throughout the course of their disease. Bone marrow CFU-s in both regressors and progressors remained uninfected and were not induced to increased cell cycling.  相似文献   

18.
Abstract. Animals infected with conventional anaemia (FVA) or polycythemia-inducing (FVP) strains of the Friend virus develop lethal erythroleukaemia. A variant strain, RFV, induces an initially identical disease except that it spontaneously regresses in 50% of infected mice. to determine whether pluripotent stem cells as measured by spleen colony forming units (CFU-s) in leukaemic mice are productively infected with virus and whether their infection influences the outcome of the disease, we tested CFU-s from leukaemic mice for susceptibility to cytotoxicity by monospecific antiviral gp70 antiserum. Spleen CFU-s from progressively leukaemic (FVP, FVA and RFV) mice were productively infected with virus. CFU-s in RFV progressors became infected by 40 days post-virus inoculation. FVA and FVP progressors became infected between 15 and 21 days post virus. Infection of CFU-s was accompanied by an increase in the proportion of replicating (S phase) CFU-s in these populations. Spleen CFU-s from fully regressed RFV regressor mice were uninfected and remained so throughout the course of their disease. Bone marrow CFU-s in both regressors and progressors remained uninfected and were not induced to increased cell cycling.  相似文献   

19.
Using a chromosome marker within a syngeneic system, we investigated the seeding characteristics of murine hematopoietic stem cells after transplantation to irradiated hosts. The chromosome-marked test cells were allowed to compete with normal marrow cells in repopulating the spleen and marrow of irradiated mice. Although the seeding behavior of normal marrow could be predicted from the number of colony-forming units-spleen (CFU-s) transplanted, the marrow seeding of melphalan-treated marrow was 7-fold greater than expected. Repopulation of marrow by spleen cells was less effective than expected from the CFU-s content, while the reverse was true after repopulation by fetal liver cells. These differences were emphasized after treatment of cell donors with melphalan. The results were due primarily to differences in the lodging properties of the transplanted cells, those seeding in the marrow were less sensitive to melphalan than CFU-s. In some instances marrow-repopulating ability could be separated from peak CFU-s activity on a density gradient, suggesting a marrow-repopulating cell exists that is distinct from CFU-s.  相似文献   

20.
We are using a plasmid-based transgenic mouse mutation model system to evaluate the effectiveness of aluminum or low-density polyethylene (LDPE) shielding after 250 MeV/u protons or 1 GeV/u iron ion irradiation. Transgenic mice, with multiple copies of the plasmid pUR288 lacZ transgene integrated into the genome of every cell of the animal, were either irradiated or sham-treated. Multiple endpoints, including early cytogenetic damage in erythrocytes at 48 h after exposure, chromosome aberrations in bone marrow lymphocytes, and lacZ mutant frequencies (MF) in brain and spleen tissues were measured in the same animals. The frequency of total circulating reticulocytes (fRET) dropped precipitously at 48 h after 2 Gy of proton irradiation. The average level of micronucleated reticulocytes (fMN–RET) was fivefold higher in the irradiated samples relative to the controls at the same time point. There was an increase in total chromosome aberrations in bone marrow lymphocytes at 8 weeks after proton irradiation but this increase was not statistically significant relative to the controls. Evaluation of the lacZ MF in the brain and spleen tissues showed that proton irradiation induced a twofold increase in MF in each tissue. Similar samples were collected from animals that were shielded from the proton beam by aluminum. Compared to the unshielded treatment group, we noted no difference in fRET, fMN–RET, chromosome aberrations in lymphocytes and lacZ MF in brain and spleen tissues obtained from these animals. In a separate study, animals were exposed to high-energy iron ions with or without 10 or 15 cm LDPE. Using the same approach, we noted a precipitous drop in fRET, and an elevation in fMN–RET within 48 h after 1 Gy of iron ions. Total chromosome aberrations in bone marrow lymphocytes were slightly elevated but not significant at 8 weeks after iron ion exposure. Shielding animals with 10 or 15 cm of polyethylene appeared to have no effect on the level of RET, MN–RET or chromosome aberrations in these animals. LacZ MF in brain and spleen tissues increased 1.5–2-fold above control levels after 1 Gy iron ions at 8 weeks after treatment. On the other hand, MF in tissues harvested from shielded animals appeared to be lower than their unshielded litermates, suggesting the polyethylene shielding was effective in reducing the iron-induced genomic damage in tissues. Although shielding may be effective, in some cases, in reducing the physical dose of particle radiation, our cytogenetic results showed that the biological impact of the particle beam remain unchanged. On the other hand, reduction in transgene MF in tissues from LDPE-shielded animals but not in the aluminum-shielded animals strongly suggests that careful consideration of the biological endpoints used is necessary in the evaluation of the efficacy of the selected shielding material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号