首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 3.5-day-old blastocyst-stage mouse embryo consists of two tissues and contains approximately 60 cells. This tiny structure has now been observed to express nearly 600 genes in a sex-specific fashion, including at least one gene (Rhox/Pem) expressed only in females from their paternal X chromosome.  相似文献   

2.
The Bex1/Rex3 gene was recently identified as an X-linked gene that is differentially expressed between parthenogenetic and normal fertilized, preimplantation stage mouse embryos. The Bex1/Rex3 gene appears to be expressed preferentially from the maternal X chromosome in blastocysts, but from either X chromosome in later stage embryonic tissues and adult tissues. To investigate whether differential expression of the Bex1/Rex3 gene between normal and parthenogenetic blastocyst stage embryos reflects genomic imprinting at the Bex1/Rex3 locus itself, or instead is the result of preferential inactivation of the paternal X chromosome or differences in timing of cellular differentiation, we examined in detail the expression pattern of the Bex1/Rex3 mRNA in normal preimplantation stage embryos, and compared its expression between androgenetic, gynogenetic, and normal fertilized embryos. Expression data reveal that the Bex1/Rex3 gene is initially transcribed at the 2-cell stage, transiently induced at the 8-cell stage, and then increases in expression again at the blastocyst stage. Very little expression is observed in isolated inner cell masses, indicating selective expression in the trophectoderm. Comparisons of Bex1/Rex3 mRNA expression between male and female androgenetic and control embryos and gynogenetic embros failed to reveal any significant difference in expression between the different classes of embryos at the 8-cell stage, or the expanding blastocyst stage (121 hr post-hCG). At the late blastocyst stage (141 hr post-hCG), expression was significantly lower in XY control embryos as compared with XX controls. Bex1/Rex3 mRNA expression did not differ between XX and XY androgenones at the blastocyst stage or between gynogenones and XX control embryos. Thus, the Bex1/Rex3 gene does not appear to be regulated directly by genomic imprinting during the preimplantation period, just as it is not regulated by imprinting at later stages. Apparent differences in gene expression may arise through the effects of trophectoderm-specific expression coupled with differences in timing of trophectoderm differentiation between the different classes of embryos and effects of preferential paternal X chromosome inactivation (XCI).  相似文献   

3.
The distribution of total polyadenylated RNA and mRNAs from the beta-actin, fibronectin, and cytokeratin Endo A genes was examined in preimplantation mouse embryos using in situ hybridization of riboprobes to RNA in sections of embryos. Polyadenylated RNA was found in the cytoplasm of all cells of blastocyst-stage embryos, whereas the specific mRNAs displayed three distinct patterns of expression: uniform throughout the embryo (beta-actin), enriched in the inner cell mass (fibronectin), and enriched in the trophectoderm (Endo A). In eight-cell embryos, the polyadenylated RNA was more concentrated in nuclei than in the cytoplasm (as noted previously), although this was not the case in blastocysts, nor was it true for the specific mRNAs that were examined. These experiments demonstrate that there is localized gene expression in the early mouse embryo, which correlates with the formation of the trophectoderm and the inner cell mass.  相似文献   

4.
Dosage compensation for the mammalian X chromosome involves the silencing of one X chromosome to achieve equal X-linked gene expression between males and females. X chromosome inactivation (XCI) is controlled by a complex set of genetic elements located in a region known as the X chromosome inactivation center, and is regulated by a combination of genomic imprinting, cell lineage-dependent erasure of imprinting, an unidentified mechanism of X chromosome counting, an incompletely understood means of selection of one X chromosome for inactivation and developmentally regulated changes in X chromosome chromatin. A detailed understanding of when and how these components of XCI occur is essential for elucidating the operative mechanisms. A model accounting for early events related to XCI, including observations in uniparental and aneuploid embryos, is presented.  相似文献   

5.
We have used two different experimental approaches to demonstrate topological separation of parental genomes in preimplantation mouse embryos: mouse eggs fertilized with 5-bromodeoxyuridine (BrdU)-labeled sperm followed by detection of BrdU in early diploid embryos, and differential heterochromatin staining in mouse interspecific hybrid embryos. Separation of chromatin according to parental origin was preserved up to the four-cell embryo stage and then gradually disappeared. In F1 hybrid animals, genome separation was also observed in a proportion of somatic cells. Separate nuclear compartments during preimplantation development, when extreme chromatin remodelling occurs, and possibly in some differentiated cell types, may be associated with epigenetic reprogramming.  相似文献   

6.
7.
8.
Using H253 mouse stock harboring X-linked HMG-lacZ transgene, we examined X chromosome inactivation patterns in sectioned early female embryos. X-gal staining patterns were generally consistent with the paternal X inactivation in the trophectoderm and the primitive endoderm cell lineages and random inactivation in the epiblast lineages. The occurrence of embryonic visceral endoderm cells apparently at variance with the paternal X chromosome inactivation in 7.5 dpc embryos was explained by the replacement of visceral endoderm cells with cells of epiblast origin. The frequency of cells negative for X-gal staining in 4.5-5.5 dpc XmXp* embryos fluctuated considerably especially in the extraembryonic ectoderm and the primitive endoderm, whereas it was less variable in the embryonic ectoderm. We could not, however, determine whether it is a normal phenomenon revealed for the first time by the use of HMG-lacZ transgene or an abnormality caused by the multicopy transgene.  相似文献   

9.
Single blastomeres were isolated from zona-free 8-cell mouse embryos and assayed for X-linked hypoxanthine phosphoribosyl transferase (HPRT) activity and autosome-linked adenine phosphoribosyl transferase (APRT) activity. At this stage of development both X chromosomes are active in female embryos. Hence, a bimodal distribution of HPRT: APRT ratios, corresponding to male (XY) and female (XX) biopsied samples, was observed due to the 2-fold difference in gene dosage for HPRT activity. Batches of putative male and female embryos identified in this way were transferred to pseudopregnant recipient females. Development of the seven-eighths embryos was equivalent to that of control zona-free intact embryos. Sex determination by measurement of X-linked gene dosage was accurate and rapid enough to allow transfer of embryos of known sex without the need for cryopreservation.  相似文献   

10.
11.
Summary By means of a double labeling method with H3-thymidine and 5-bromodeoxyuridine, it was found that the X chromosome showed no sign of change from an allocyclic to an isocyclic state, or vice versa in 6.5- and 7.5-day mouse embryos. Thus, reversal of allocycly may not account for the predominance of cells with the paternally derived X chromosome inactive in the yolk sac and the chorion of the mouse embryo.  相似文献   

12.
Reliable estimation and improvement of the developmental potential of in vitro production (IVP) embryos requires functional criteria of embryo quality. Antiapoptotic and mitogenic effects of insulin-like growth factor I (IGF-I), applied during bovine IVP, were studied. Day 6.5 blastocysts were fixed and processed for TUNEL to detect apoptotic cells, for immunocytochemical detection of proliferating cell nuclear antigen (PCNA), and for propidium iodide (PI) staining to detect all nuclei. Laser scanning confocal microscopy was used to determine apoptotic (TUNEL/PI) and proliferative (PCNA/PI) indices. Addition of IGF-I to the culture but not to the maturation medium increased the morula/blastocyst yield (P = 0.03), but the cleavage rate was not affected. During culture, IGF-I significantly lowered the apoptotic index by decreasing the number of apoptotic cells per embryo and elevated the total cell number of the blastocysts. The frequency of blastocysts with apoptotic cells was not affected. IGF-I increased the proportion of blastocysts with apoptotic cells in the inner cell mass area only by reducing apoptosis in the trophectoderm area. The PCNA index was not affected by IGF-I. A positive correlation observed between apoptotic and PCNA-positive cells was significant in groups stimulated with IGF-I during in vitro culture. Of TUNEL-positive cells, 30%-40% per embryo were also positive for PCNA. This colocalization may indirectly suggest an activation of DNA repair process in TUNEL-positive cells in response to DNA fragmentation. IGF-I reduces apoptosis in bovine IVP embryos. The requirement of IGF-I is more critical during embryo culture than during oocyte maturation. Our data suggest that an assay for TUNEL in conjunction with cell proliferation analysis can provide useful information about the quality of IVP embryos.  相似文献   

13.
14.
One of the two X chromosomes is inactivated in female eutherian mammals. MacroH2A, an unusual histone variant, is known to accumulate on the inactive X chromosome (Xi) during early embryo development, and can thus be used as a marker of the Xi. In this study, we produced a transgenic mouse line expressing the mouse MacroH2A1.2–enhanced green fluorescent protein (EGFP) fusion protein (MacroH2A–EGFP) under the control of a CAG promoter and verified whether MacroH2A–EGFP would be useful for tracing the process of X chromosome inactivation by visualizing Xi noninvasively in preimplantation embryos. In transgenic female mice, MacroH2A–EGFP formed a fluorescent focus in nuclei throughout the body. In female blastocysts, the MacroH2A–EGFP focus colocalized with Xist RNA, well known as a marker of Xi. Fluorescence marking of Xi was first observed in some embryonic cells between the 4‐ and 8‐cell stages. These results demonstrate that MacroH2A can bind to the Xi by around the 8‐cell stage in female mouse embryos. These MacroH2A–EGFP transgenic mice might be useful to elucidate the process of X chromosome inactivation during the mouse life cycle. genesis 51:259–267. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
16.
Effects of epidermal growth factor on preimplantation mouse embryos   总被引:7,自引:0,他引:7  
When epidermal growth factor (EGF) was added to the medium for culture of preimplantation embryos, morphological development as determined by microscopic observation was unaffected, but 333 nM-EGF stimulated total uptake of [3H]leucine by late morulae/blastocysts which had been cultured for 24 h from morulae. Incorporation of [3H]leucine into protein by these embryos was increased by 0.33, 3.3 and 33 nM-EGF, following a quadratic relationship producing less stimulation at 333 nM, which may indicate down regulation of receptors. The estimated EC50 was approximately 0.25 nM. Manipulation of the culture period indicated that the embryos responded to EGF at the morula/blastocyst transition period and immunosurgery was used to show that the increased protein synthesis was restricted to the trophectoderm cells. No mitogenic effect was observed. The effective concentration of EGF is close to that of serum and to values which stimulate other tissues. It is suggested that EGF receptors appear at compaction and that EGF may have a role in differentiation of the trophectoderm cells.  相似文献   

17.
18.
A quantitative RT-PCR approach has been used to examine the expression of a number of X-linked genes during preimplan-tation development of normal mouse embryos and in androgenetic and gynogenetic mouse embryos. The data reveal moderately reduced expression of the Prps1, Hprt, and Pdha1 mRNAs in androge-netic eight-cell and morula stage embryos, but not in androgenetic blastocysts. Pgk1 mRNA abundance was severely reduced in androgenones at the eight-cell and morula stages and remained reduced, but to a lesser degree, in androgenetic blastocysts. These data indicate that paternally inherited X chromosomes are at least partially repressed in androgenones, as they are in normal XX embryos, and that the degree of this repression is chromosome position-dependent or gene-dependent. Gynogenetic embryos expressed elevated amounts of some mRNAs at the morula and blas-tocyst stages, indicative of a delay in dosage compensation that may be chromosome position-dependent. The Xist RNA was expressed at a greater abundance in androgenones than in gynogenones at the eight-cell and morula stages, consistent with previous studies. Xist expression was observed in both and rogenones and gynogenones at the blas-tocyst stage. We conclude that the developmental arrest in early androgenones may be, in part, due to reduced expression of essential X-linked genes, particularly those near the X inactivation center, where as the developmental defects of gyno-genones and parthenogenones, by contrast, may be partially due to overexpression of X-linked genes in extraembryonic tissues, possibly those far-thest away from the X inactivation center. © 1995 Wiley-Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号