首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As in many anurans, males of the totally aquatic species, Xenopus laevis, advertise their sexual receptivity using vocalizations. Unusually for anurans, X. laevis females also advertise producing a fertility call that results in courtship duets between partners. Although all X. laevis calls consist of repetitive click trains, male and female calls exhibit sex-specific acoustic features that might convey sexual identity. We tested the significance of the carrier frequency and the temporal pattern of calls using underwater playback experiments in which modified calls were used to evoke vocal responses in males. Since males respond differently to male and female calls, the modification of a key component of sexual identity in calls should change the male's response. We found that a female-like slow call rhythm triggers more vocal activity than a male-like fast rhythm. A call containing both a female-like temporal pattern and a female-like carrier frequency elicits higher levels of courtship display than either feature alone. In contrast, a male-like temporal pattern is sufficient to trigger typical male-male encounter vocalizations regardless of spectral cues. Thus, our evidence supports a role for temporal acoustic cues in sexual identity recognition and for spectral acoustic cues in conveying female attractiveness in X. laevis.  相似文献   

2.
Barn owls use interaural intensity differences to localize sounds in the vertical plane. At a given elevation the magnitude of the interaural intensity difference cue varies with frequency, creating an interaural intensity difference spectrum of cues which is characteristic of that direction. To test whether space-specific cells are sensitive to spectral interaural intensity difference cues, pure-tone interaural intensity difference tuning curves were taken at multiple different frequencies for single neurons in the external nucleus of the inferior colliculus. For a given neuron, the interaural intensity differences eliciting the maximum response (the best interaural intensity differences) changed with the frequency of the stimulus by an average maximal difference of 9.4±6.2 dB. The resulting spectral patterns of these neurally preferred interaural intensity differences exhibited a high degree of similarity to the acoustic interaural intensity difference spectra characteristic of restricted regions in space. Compared to stimuli whose interaural intensity difference spectra matched the preferred spectra, stimuli with inverted spectra elicited a smaller response, showing that space-specific neurons are sensitive to the shape of the spectrum. The underlying mechanism is an inhibition for frequency-specific interaural intensity differences which differ from the preferred spectral pattern. Collectively, these data show that space-specific neurons are sensitive to spectral interaural intensity difference cues and support the idea that behaving barn owls use such cues to precisely localize sounds.Abbreviations ABI average binaural intensity - HRTF head-related transfer function - ICx external nucleus of the inferior colliculus - IID interaural intensity difference - ITD interaural time difference - OT optic tectum - RMS root mean square - VLVp nucleus ventralis lemnisci laterale, pars posterior  相似文献   

3.
Female greater wax moths Galleria mellonella display by wing fanning in response to bursts of ultrasonic calls produced bymales. The temporal and spectral characteristics of these callsshow some similarities with the echolocation calls of batsthat emit frequency-modulated (FM) signals. Female G. mellonellatherefore need to distinguish between the attractive signalsof male conspecifics, which may lead to mating opportunities,and similar sounds made by predatory bats. We therefore predictedthat (1) females would display in response to playbacks of male calls; (2) females would not display in response to playbacksof the calls of echolocating bats (we used the calls of Daubenton'sbat Myotis daubentonii as representative of a typical FM echolocatingbat); and (3) when presented with male calls and bat callsduring the same time block, females would display more whenperceived predation risk was lower. We manipulated predationrisk in two ways. First, we varied the intensity of bat callsto represent a nearby (high risk) or distant (low risk) bat.Second, we played back calls of bats searching for prey (lowrisk) and attacking prey (high risk). All predictions weresupported, suggesting that female G. mellonella are able todistinguish conspecific male mating calls from bat calls, andthat they modify display rate in relation to predation risk.The mechanism (s) by which the moths separate the calls ofbat and moth must involve temporal cues. Bat and moth signalsdiffer considerably in duration, and differences in durationcould be encoded by the moth's nervous system and used in discrimination.  相似文献   

4.
Both the frequency and the temporal pattern of action potentialproduction in an insect olfactory receptor neuron are stronglyaffected by odorant composition and the time course over whichstimulus concentration varies. To investigate the temporal characteristicsof the neurophysiological responses of these neurons, we deviseda stimulus delivery system that allows us to repeatedly presentwell-mixed, constant concentration odor pulses with relativelysharp onsets and offsets. Here we compare neurophysiologicalresponses to several different stimulation regimens, includingpulses of different durations and repetition rates. During stimulationwith high concentrations of pheromone, the temporal patternof neural activity from olfactory receptor neurons on the antennaof Trichoplusia ni (Hübner) is characterized by an initialphasic period (100–200 ms), followed by a tonic periodwhich is typically maintained for the remaining duration ofthe stimulus. Different olfactory receptor neurons appear tovary among themselves in the relative distribution between thephasic and tonic portions of the overall discharge. During stimulationregimens involving rapid repeated pulses of odorants, a portionof the phasic response levels is preserved during each pulse.Consequently, T. ni males probably detect much of the fluctuationin concentration of pheromone that may normally occur downwindfrom the site of pheromone release.  相似文献   

5.
Several species and developmental stages of calanoid copepodswere tested for responses to environmental cues in a laboratoryapparatus that mimicked conditions commonly associated withpatches of food in the ocean. All species responded to the presenceof phytoplankton by feeding. All species responded by increasingproportional residence time in one, but not both, of the treatmentsdefined by gradients of velocity or density. Most species increasedswimming speed and frequency of turning in response to the presenceof chemical exudates or gradients of velocity. Only one species,Eurytemora affinis, increased proportional time of residencein response to gradients in density of the water. Responsesof E. affinis to combined cues did not definitively demonstratea hierarchical use of different cues as previously observedfor Temora longicornis and Acartia tonsa. A simple foragingsimulation was developed to assess the applicability in thefield of the behavioral results observed in the laboratory.These simulations suggest that observed fine-scale behaviorscould lead to copepod aggregations observed in situ. The presentstudy demonstrates that behavioral response to cues associatedwith fine-scale oceanographic gradients and biological patchinessis functionally important and prevalent among copepods and likelyhas significant impacts on larger-scale distributional patterns.  相似文献   

6.
Amplitude modulation can serve as a cue for segregating streams of sounds from different sources. Here we evaluate stream segregation in humans using ABA- sequences of sinusoidally amplitude modulated (SAM) tones. A and B represent SAM tones with the same carrier frequency (1000, 4000 Hz) and modulation depth (30, 100%). The modulation frequency of the A signals (fmodA) was 30, 100 or 300 Hz, respectively. The modulation frequency of the B signals was up to four octaves higher (Δfmod). Three different ABA- tone patterns varying in tone duration and stimulus onset asynchrony were presented to evaluate the effect of forward suppression. Subjects indicated their 1- or 2-stream percept on a touch screen at the end of each ABA- sequence (presentation time 5 or 15 s). Tone pattern, fmodA, Δfmod, carrier frequency, modulation depth and presentation time significantly affected the percentage of a 2-stream percept. The human psychophysical results are compared to responses of avian forebrain neurons evoked by different ABA- SAM tone conditions [1] that were broadly overlapping those of the present study. The neurons also showed significant effects of tone pattern and Δfmod that were comparable to effects observed in the present psychophysical study. Depending on the carrier frequency, modulation frequency, modulation depth and the width of the auditory filters, SAM tones may provide mainly temporal cues (sidebands fall within the range of the filter), spectral cues (sidebands fall outside the range of the filter) or possibly both. A computational model based on excitation pattern differences was used to predict the 50% threshold of 2-stream responses. In conditions for which the model predicts a considerably larger 50% threshold of 2-stream responses (i.e., larger Δfmod at threshold) than was observed, it is unlikely that spectral cues can provide an explanation of stream segregation by SAM.  相似文献   

7.
In this work we study the influence and relationship of five different acoustical cues to the human sound localisation process. These cues are: interaural time delay, interaural level difference, interaural spectrum, monaural spectrum, and band-edge spectral contrast. Of particular interest was the synthesis and integration of the different cues to produce a coherent and robust percept of spatial location. The relative weighting and role of the different cues was investigated using band-pass filtered white noise with a frequency range (in kHz) of: 0.3-5, 0.3-7, 0.3-10, 0.3-14, 3-8, 4-9, and 7-14. These stimuli provided varying amounts of spectral information and physiologically detectable temporal information, thus probing the localisation process under varying sound conditions. Three subjects with normal hearing in both ears have performed five trials of 76 test positions for each of these stimuli in an anechoic room. All subjects showed systematic mislocalisation on most of these stimuli. The location to which they are mislocalised varies among subjects but in a systematic manner related to the five different acoustical cues. These cues have been correlated with the subject's localisation responses on an individual basis with the results suggesting that the internal weighting of the spectral cues may vary with the sound condition.  相似文献   

8.
Speech processing inherently relies on the perception of specific, rapidly changing spectral and temporal acoustic features. Advanced acoustic perception is also integral to musical expertise, and accordingly several studies have demonstrated a significant relationship between musical training and superior processing of various aspects of speech. Speech and music appear to overlap in spectral and temporal features; however, it remains unclear which of these acoustic features, crucial for speech processing, are most closely associated with musical training. The present study examined the perceptual acuity of musicians to the acoustic components of speech necessary for intra-phonemic discrimination of synthetic syllables. We compared musicians and non-musicians on discrimination thresholds of three synthetic speech syllable continua that varied in their spectral and temporal discrimination demands, specifically voice onset time (VOT) and amplitude envelope cues in the temporal domain. Musicians demonstrated superior discrimination only for syllables that required resolution of temporal cues. Furthermore, performance on the temporal syllable continua positively correlated with the length and intensity of musical training. These findings support one potential mechanism by which musical training may selectively enhance speech perception, namely by reinforcing temporal acuity and/or perception of amplitude rise time, and implications for the translation of musical training to long-term linguistic abilities.  相似文献   

9.
Sexually receptive female moths and many other insects releasechemical attractants (sex pheromones) to lure conspecific mates.Recent evidence indicates, moreover, that the odor plume formeddownwind from the female possesses a discontinuous structurethat appears to provide the searching male with orientationcues.Using intracellular methods, we find that many central olfactoryneurons in male moths (Manduca sexta) can track pulsed pheromonalstimuli precisely. The cells respond to each brief odor pulsewith a similarly brief burst of action potentials, and the separationbetween response bursts is aided by inhibitory synaptic input.Furthermore, these neurons appear to participate in at leasttwo levels of ‘feature detection’: they respondselectively to pheromonal stimuli, and they follow pulsed stimulationonly in a limited range of frequencies Above the frequency limit,the cells respond as if the male is stimulated by a prolonged,uniform concentration of pheromone. The ability of these neuronsto encode changes in the temporal characteristics of pheromonalstimuli may provide the male with positional cues to help himlocate the pheromone source over long distances.  相似文献   

10.
Calling behaviour and the characteristics of the males’ call are important for mate attraction, female mate choice and male mating success in anurans. In this study I investigated the variation in calling activity and the variation in one spectral (dominant frequency) and four temporal properties (call rate, call duration, duty cycle and pulse rate) of the advertisement call of strawberry poison frogs, Dendrobates pumilio, in two Costa Rican populations during two study periods. Regarding all call properties, no differences were found between populations or years, but between‐male variation was significantly higher than within‐recording and within‐male variation. Dominant frequency was less variable within and among males than temporal call properties and I classified the former as static and the latter as intermediate properties of the call. No call property seemed to be strongly affected by body length or weight. Moreover, I used behavioural observations to relate male calling behaviour to mating success. Calling activity was more variable between males and accounted for more variability in mating success in multiple regression models than any call property. Some call properties (call rate, dominant frequency and pulse rate) were also related to male mating success in one or two study periods. These call properties are probably important for females during courtship to assess their prospective mate and/or for competitive male–male interactions. Furthermore, I compared call properties and mating success of some males for which data were available for both study periods. Pulse rate was lower in the second than in the first year, suggesting age‐related changes in this call property. Moreover, male D. pumilio increased their relative mating success from the first to the second study year. Together with other studies, the data of this study suggest that, in anurans, endurance rivalry contributes more to variation in male mating success than does female choice based on male characteristics.  相似文献   

11.
Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30–80 Hz) and beta (12–30 Hz) range) showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100–1000 Hz). The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems.  相似文献   

12.
Females increase their risk of mating with heterospecifics whenthey prefer the traits of conspecifics that overlap with traitsfound in heterospecifics. Xiphophorus pygmaeus females havea strong preference for larger males, which could lead to femalespreferring to mate with heterospecific males; almost all sympatricX. cortezi males are larger than X. pygmaeus males. In thisstudy, we show that X. pygmaeus females preferred the chemicalcues from conspecifics over those of X. cortezi males. However,preference for the chemical cues of conspecifics could not reversethe preference for larger heterospecific males. Only when femaleswere presented with two species-specific cues (vertical barsand chemical cues) did more females spend more time on averagewith the smaller conspecific males. These results support the"backup signal" hypothesis for the evolution of multiple preferences;together, the two species-specific cues increased the accuracywith which females were able to avoid heterospecific males.In addition, the results suggest that in those situations inwhich the traits of conspecifics overlap with traits found inheterospecifics, females can use the assessment of multiplecues to avoid mating with heterospecifics without compromisingtheir preference for the highest-quality conspecific.  相似文献   

13.
Response variability of the single neurons of the inferior colliculus of mouse (Mus musculus) to series of noise bands and of notch noises with regular 1/12 octave steps of the band/notch center frequency and width of noise band/notch 1/3 octave, was studied. Neurons with strong inhibitory influence in excitatory response area (inhibitory-dominated) show low impulse activity when noise band exceeded excitatory response area. Spectral contrasts crossing the center of excitatory response area (at CF or nearly CF) were found to be the most efficient stimuli for such neurons. Neuron responses to spectral contrasts derived both from noise band and noise notch were identical. Approaching of inhibitory and excitatory inputs is expected to sharpen the auditory neurons frequency tuning to position of spectral contrasts, similar to neuronal processing in visual system. Neuron selectivity to the direction of spectral contrasts movement was determined in neuron response differences when the noise band or notch shifted from excitatory area to inhibitory areas as compared with shift in the opposite direction. Functional role of contrast mechanism for sound localization on the base spectral cues related to external ear transfer characteristics is discussed.  相似文献   

14.
Spectrotemporal modulation (STM) detection performance was examined for cochlear implant (CI) users. The test involved discriminating between an unmodulated steady noise and a modulated stimulus. The modulated stimulus presents frequency modulation patterns that change in frequency over time. In order to examine STM detection performance for different modulation conditions, two different temporal modulation rates (5 and 10 Hz) and three different spectral modulation densities (0.5, 1.0, and 2.0 cycles/octave) were employed, producing a total 6 different STM stimulus conditions. In order to explore how electric hearing constrains STM sensitivity for CI users differently from acoustic hearing, normal-hearing (NH) and hearing-impaired (HI) listeners were also tested on the same tasks. STM detection performance was best in NH subjects, followed by HI subjects. On average, CI subjects showed poorest performance, but some CI subjects showed high levels of STM detection performance that was comparable to acoustic hearing. Significant correlations were found between STM detection performance and speech identification performance in quiet and in noise. In order to understand the relative contribution of spectral and temporal modulation cues to speech perception abilities for CI users, spectral and temporal modulation detection was performed separately and related to STM detection and speech perception performance. The results suggest that that slow spectral modulation rather than slow temporal modulation may be important for determining speech perception capabilities for CI users. Lastly, test–retest reliability for STM detection was good with no learning. The present study demonstrates that STM detection may be a useful tool to evaluate the ability of CI sound processing strategies to deliver clinically pertinent acoustic modulation information.  相似文献   

15.
Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal’s ability to locate the source of odor cues in realistic turbulent environments—a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.  相似文献   

16.
Small songbirds have a difficult analysis problem: their head is small compared to the wavelengths of sounds used for communication providing only small interaural time and level differences. Klump and Larsen (1992) measured the physical binaural cues in the European starling (Sturnus vulgaris) that allow the comparison of acoustical cues and perception. We determined the starling’s minimum audible angle (MAA) in an operant Go/NoGo procedure for different spectral and temporal stimulus conditions. The MAA for broadband noise with closed-loop localization reached 17°, while the starling’s MAA for open-loop localization of broadband noise reached 29°. No substantial difference between open-loop and closed-loop localization was found in 2 kHz pure tones. The closed-loop MAA improved from 26° to 19° with an increase in pure tone frequency from 1 to 4 kHz. This finding is in line with the physical cues available. While the starlings can only make use of interaural time difference cues at lower frequencies (e.g., 1 and 2 kHz), additional interaural level difference cues become available at higher frequencies (e.g., 4 kHz or higher, Klump and Larsen 1992). An improvement of the starling’s MAA with an increasing number of standard stimulus presentations prior to the test stimulus has important implications for determining relative (MAA) localization thresholds.  相似文献   

17.
Colour vision in diurnal and nocturnal hawkmoths   总被引:4,自引:0,他引:4  
Diurnal and nocturnal hawkmoths (Sphingidae, Lepidoptera) havethree spectral types of receptor sensitive to ultraviolet, blueand green light. As avid flower visitors and pollinators, theyuse olfactory and visual cues to find and recognise flowers.Moths of the diurnal species Macroglossum stellatarum and thenocturnal species Deilephila elpenor, Hyles lineata and Hylesgallii use and learn the colour of flowers. Nocturnal speciescan discriminate flowers at starlight intensities when humansand honeybees are colour-blind. M. stellatarum can use achromatic,intensity-related cues if colour cues are absent, and this isprobably also true for D. elpenor. Both species can recognisecolours even under a changed illumination colour.  相似文献   

18.
Acoustic predator recognition has rarely been studied in anurans, in spite of the fact that hearing is widespread in these animals and that it has been demonstrated to play an important role in both arthropods and other vertebrates. Using field playback experiments, we tested the hypothesis that adult common toads (Bufo bufo) are capable of recognizing natural vocalizations of a common predator, the Eurasian otter (Lutra lutra), and show antipredator responses. We found that toads exposed to both natural (two types of otter sounds) and synthetic stimuli [white noise (WN) and otter sound‐based amplitude modulated WN] increased time allocated to locomotion and escape behaviour. These responses were correlated with time elapsed from sunset to the onset of testing and were independent from the type of acoustic signal, toad features and other environmental factors monitored. We conclude that B. bufo has not developed a selective recognition of predator vocalizations, suggesting that low‐frequency or seismic sounds associated with predator movements may provide anurans with better cues about an approaching risk. We propose that the time‐dependent response to acoustic stimuli of common toads represents a case of threat‐sensitivity and demonstrates that it can occur even when the response to the threat is not predator specific.  相似文献   

19.
下丘神经元声信号处理过程中的频谱整合   总被引:2,自引:0,他引:2  
自由声场条件下,采用特定双声刺激、双电极同步记录方法研究了下丘神经元的频谱整合作用。实验在6只大棕蝠(Eptesicus fuscus)上进行,共获得22对频谱整合相关的配对神经元。结果显示:(1)81.8%(36/44)的配对神经元产生相互抑制性频谱整合,18.2%(8/44)为相互易化性频谱整合;(2)频谱整合的范围主要在20~30kHz之间,其中约一半(45.5%,20/44)的配对神经元其最佳频率差小于2kHz,但也可见最佳频率差大于10kHz的配对神经元(13.6%,6/44)产生频谱整合;(3)下丘神经元的频率及强度选择性受频谱整合作用的调制。推测等频层内及等频层之间的下丘神经元在声信号处理过程中存在相互作用机制,以利于对复杂声信号的加工。  相似文献   

20.
Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions’ temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions’ neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号