首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently demonstrated that nuclear factor-inducing kinase (NIK) plays a crucial role in osteopontin (OPN)-induced mitogen-activated protein kinase/I kappa B alpha kinase-dependent nuclear factor kappa B (NF kappa B)-mediated promatrix metalloproteinase-9 activation (Rangaswami, H., Bulbule, A., and Kundu, G. C. (2004) J. Biol. Chem. 279, 38921-38935). However, the molecular mechanism(s) by which OPN regulates NIK/MEKK1-dependent activating protein-1 (AP-1)-mediated promatrix metalloproteinase-9 activation and whether JNK1 plays any role in regulating both these pathways that control the cell motility are not well defined. Here we report that OPN induces alpha v beta3 integrin-mediated MEKK1 phosphorylation and MEKK1-dependent JNK1 phosphorylation and activation. Overexpression of NIK enhances OPN-induced c-Jun expression, whereas overexpressed NIK had no role in OPN-induced JNK1 phosphorylation and activation. Sustained activation of JNK1 by overexpression of wild type but not kinase negative MEKK1 resulted in suppression of ERK1/2 activation. But this did not affect the OPN-induced NIK-dependent ERK1/2 activation. OPN stimulated both NIK and MEKK1-dependent c-Jun expression, leading to AP-1 activation, whereas NIK-dependent AP-1 activation is independent of JNK1. OPN also enhanced JNK1-dependent/independent AP-1-mediated urokinase type plasminogen activator (uPA) secretion, uPA-dependent promatrix metalloproteinase-9 (MMP-9) activation, cell motility, and invasion. OPN stimulates tumor growth, and the levels of c-Jun, AP-1, urokinase type plasminogen activator, and MMP-9 were higher in OPN-induced tumor compared with control. To our knowledge this is first report that OPN induces NIK/MEKK1-mediated JNK1-dependent/independent AP-1-mediated pro-MMP-9 activation and regulates the negative crosstalk between NIK/ERK1/2 and MEKK1/JNK1 pathways that ultimately controls the cell motility, invasiveness, and tumor growth.  相似文献   

2.
Vascular endothelial growth factor (VEGF) plays an essential role in the initiation and regulation of angiogenesis-a crucial component of wound healing and cancer growth. Prostaglandins (PGs) stimulate angiogenesis but the precise mechanisms of their pro-angiogenic actions remain unexplained. We investigated whether prostaglandin E(2) (PGE(2)) can induce VEGF expression in rat gastric microvascular endothelial cells (RGMEC) and the signaling pathway(s) involved. We demonstrated that PGE(2) significantly increased ERK2 and JNK1 activation and VEGF mRNA and protein expression. Incubation of RGMEC with PD 98059 (MEK kinase inhibitor) significantly reduced PGE(2)-induced ERK2 activity, VEGF mRNA and protein expression. Furthermore, PD 98059 treatment almost completely abolished JNK1 activation. Our data suggest that PGE(2)-stimulates VEGF expression in RGMEC via transactivation of JNK1 by ERK2. One potential implication of this finding is that increased PG levels in cancers could facilitate tumor growth by stimulating VEGF synthesis and angiogenesis.  相似文献   

3.
4.
5.
6.
Low-energy laser irradiation (LELI) has been shown to promote skeletal muscle regeneration in vivo and to activate skeletal muscle satellite cells, enhance their proliferation and inhibit differentiation in vitro. In the present study, LELI, as well as the addition of serum to serum-starved myoblasts, restored their proliferation, whereas myogenic differentiation remained low. LELI induced mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) phosphorylation with no effect on its expression in serum-starved myoblasts. Moreover, a specific MAPK kinase inhibitor (PD098059) inhibited the LELI- and 10% serummediated ERK1/2 activation. However, LELI did not affect Jun N-terminal kinase (JNK) or p38 MAPK phosphorylation or protein expression. Whereas a 3-sec irradiation induced ERK1/2 phosphorylation, a 12-sec irradiation reduced it, again with no effect on JNK or p38. Moreover, LELI had distinct effects on receptor phosphorylation: it caused phosphorylation of the hepatocyte growth factor (HGF) receptor, previously shown to activate the MAPK/ERK pathway, whereas no effect was observed on tumor suppressor necrosis alpha (TNF-alpha) receptor which activates the p38 and JNK pathways. Therefore, by specifically activating MAPK/ERK, but not JNK and p38 MAPK enzymes, probably by specific receptor phosphorylation, LELI induces the activation and proliferation of quiescent satellite cells and delays their differentiation.  相似文献   

7.
To understand the role of redox-sensitive mechanisms in vascular smooth muscle cell (VSMC) growth, we have studied the effect of N-acetylcysteine (NAC), a thiol antioxidant, and diphenyleneiodonium (DPI), a potent NADH/NADPH oxidase inhibitor, on serum-, platelet-derived growth factor BB-, and thrombin-induced ERK2, JNK1, and p38 mitogen-activated protein (MAP) kinase activation; c-Fos, c-Jun, and JunB expression; and DNA synthesis. Both NAC and DPI completely inhibited agonist-induced AP-1 activity and DNA synthesis in VSMC. On the contrary, these compounds had differential effects on agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression. NAC inhibited agonist-induced ERK2, JNK1, and p38 MAP kinase activation and c-Fos, c-Jun, and JunB expression except for platelet-derived growth factor BB-induced ERK2 activation. In contrast, DPI only inhibited agonist-induced p38 MAP kinase activation and c-Fos and JunB expression. Antibody supershift assays indicated the presence of c-Fos and JunB in the AP-1 complex formed in response to all three agonists. In addition, cotransfection of VSMC with expression plasmids for c-Fos and members of the Jun family along with the AP-1-dependent reporter gene revealed that AP-1 with c-Fos and JunB composition exhibited a higher transactivating activity than AP-1 with other compositions tested. All three agonists significantly stimulated reactive oxygen species production, and this effect was inhibited by both NAC and DPI. Together, these results strongly suggest a role for redox-sensitive mechanisms in agonist-induced ERK2, JNK1, and p38 MAP kinase activation; c-Fos, c-Jun, and JunB expression; AP-1 activity; and DNA synthesis in VSMC. These results also suggest a role for NADH/NADPH oxidase activity in some subset of early signaling events such as p38 MAP kinase activation and c-Fos and JunB induction, which appear to be important in agonist-induced AP-1 activity and DNA synthesis in VSMC.  相似文献   

8.
Summary Hyperbaric oxygen (HBO) is increasingly used in a number of areas of medical practice, such as selected problem infections and wounds. The beneficial effects of HBO in treating ischemia-related wounds may be mediated by stimulating angiogenesis. We sought to investigate VEGF, the main angiogenic regulator, regulated by HBO in human umbilical vein endothelial cells (HUVECs). In this study, we found that VEGF was up regulated both at mRNA and protein levels in HUVECs treated with HBO dose- and time-dependently. Since there are several AP-1 sites in the VEGF promoter, and the c-Jun/AP-1 is activated through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and extracellular signal regulated kinase (ERK), we further examined the c-Jun, JNK and ERK that might be involved in the VEGF induced by HBO. The VEGF mRNA induced by HBO was blocked by both PD98059 and SP600125, the ERK and JNK inhibitors respectively. HBO induced phospho-ERK and phospho-JNK expressions within 15 min. We further demonstrated that c-Jun phosphorylation was induced within 60 min of HBO treatment. HBO also induced the nuclear AP-1 binding ability within 30–60 min, but the AP-1 induction was blocked by treatment with either the ERK or JNK inhibitor. To verify that the VEGF expression induced by HBO is through the AP-1 trans-activation and VEGF promoter, both the VEGF promoter and AP-1 driving luciferase activity were found increased by the cells treated with HBO. The c-Jun mRNA, which is also driven by AP-1, was also induced by HBO, and the induction of c-Jun was blocked by ERK and JNK inhibitors. We suggest that VEGF induced by HBO is through c-Jun/AP-1 activation, and through simultaneous activation of ERK and JNK pathways.  相似文献   

9.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   

10.
11.
Retinoic acid (RA), a potent teratogen, produces a characteristic set of embryonic cardiovascular malformations similar to those observed in neural crest ablated avians. While the effects of RA on neural crest are well described, the molecular mechanism(s) of RA action on these cells is less clear. The present study examines the relationship between RA and mitogen-activated protein kinase signaling in neural crest cells and demonstrates that c-Jun N-terminal kinase (JNK) activation is severely repressed by RA. RA suppressed migration and proliferation of primary cultures of mouse neural crest cells treated in vitro as well as from animals treated in vivo. On Western blots, JNK activation/phosphorylation in neural crest cultures was reduced, while neither extracellular signal-regulated kinase (ERK) nor p38 pathways were affected. Both the dose-dependent stimulation of neural crest outgrowth and JNK phosphorylation by platelet-derived growth factor AA, which promotes outgrowth but not proliferation of neural crest cultures, were completely abrogated by RA. To establish the relevance of the JNK signaling pathway to cardiac neural crest migration, dominant negative adenoviral constructs were used to inhibit upstream activation of JNK or c-Jun downstream responses. Both adenoviral constructs markedly reduced neural crest cell outgrowth, while a dominant negative inhibitor of the p38 pathway had no effect. These data demonstrate that the JNK signaling pathway and c-Jun activation are critical for cardiac neural crest outgrowth and are potential targets for the action of RA.  相似文献   

12.
13.
14.
Effects of food factors on signal transduction pathways   总被引:6,自引:0,他引:6  
  相似文献   

15.
Mycoplasma fermentans lipoproteins (LAMPf) are capable of activating macrophages and inducing the secretion of proinflammatory cytokines. We have recently reported that mitogen-activated protein kinase (MAPK) pathways and NF-kappaB and activated protein 1 (AP-1) play a crucial role in the activation induced by this bacterial compound. To further elucidate the mechanisms by which LAMPf mediate the activation of macrophages, we assessed the effects of inhibiting small G proteins Rac, Cdc42, and Rho. The Rho-specific inhibitor C3 enzyme completely abolished the secretion of tumor necrosis factor alpha by macrophages stimulated with LAMPf and also inhibited the activation of extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38 kinase. In addition, we have shown that LAMPf stimulate Cdc42 and that inhibition of Cdc42 or Rac by dominant negative mutants abrogates LAMPf-mediated activation of JNK and transactivation of NF-kappaB and AP-1 in the murine macrophage cell line RAW 264.7. These results indicate that small G proteins Rho, Cdc42, and Rac are involved in the cascade of events leading to the macrophage activation by mycoplasma lipoproteins.  相似文献   

16.
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号