首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Kamerman P  Fuller A 《Life sciences》2000,67(21):2639-2645
We investigated the effect of N-nitro-L-arginine methyl ester (L-NAME), an unspecific nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a relatively selective inhibitor of the inducible NOS enzyme, on both gram-negative lipopolysaccharide (LPS) and gram-positive muramyl dipeptide (MDP) fever in guinea pigs. Intraperitoneal injection of either 10 mg/kg L-NAME or 25 mg/kg aminoguanidine inhibited the febrile response to an intramuscular injection of 50 microg/kg MDP. However, LPS fever (20 microg/kg) was inhibited only by L-NAME. The development of LPS fever may therefore occur independently of the synthesis of nitric oxide by the inducible NOS enzyme, while MDP fever may involve synthesis of nitric oxide by both the inducible and the constitutively expressed NOS enzymes.  相似文献   

2.
In this study, we administered aminoguanidine, a relatively selective inducible nitric oxide synthase (iNOS) inhibitor, to study the role of nitric oxide (NO) in LPS-induced decrease in IGF-I and IGFBP-3. Adult male Wistar rats were injected intraperitoneally with LPS (100 microg/kg), aminoguanidine (100 mg/kg), LPS plus aminoguanidine, or saline. Rats were injected at 1730 and 0830 the next day and killed 4 h after the last injection. LPS administration induced an increase in serum concentrations of nitrite/nitrate (P < 0.01) and a decrease in serum concentrations of growth hormone (GH; P < 0.05) and IGF-I (P < 0.01) as well as in liver IGF-I mRNA levels (P < 0.05). The LPS-induced decrease in serum concentrations of IGF-I and liver IGF-I gene expression seems to be secondary to iNOS activation, since aminoguanidine administration prevented the effect of LPS on circulating IGF-I and its gene expression in the liver. In contrast, LPS-induced decrease in serum GH was not prevented by aminoguanidine administration. LPS injection decreased IGFBP-3 circulating levels (P < 0.05) and its hepatic gene expression (P < 0.01), but endotoxin did not modify the serum IGFBP-3 proteolysis rate. Aminoguanidine administration blocked the inhibitory effect of LPS on both IGFBP-3 serum levels and its hepatic mRNA levels. When aminoguanidine was administered alone, IGFBP-3 serum levels were increased (P < 0.05), whereas its hepatic mRNA levels were decreased. This contrast can be explained by the decrease (P < 0.05) in serum proteolysis of this binding protein caused by aminoguanidine. These data suggest that iNOS plays an important role in LPS-induced decrease in circulating IGF-I and IGFBP-3 by reducing IGF-I and IGFBP-3 gene expression in the liver.  相似文献   

3.
Role of nitric oxide in tolerance to lipopolysaccharide in mice.   总被引:2,自引:0,他引:2  
The injection of repeated doses of lipopolysaccharide (LPS) results in attenuation of the febrile response, which is called endotoxin tolerance. We tested the hypothesis that nitric oxide (NO) arising from inducible NO synthase (iNOS) plays a role in endotoxin tolerance, using not only pharmacological trials but also genetically engineered mice. Body core temperature was measured by biotelemetry in mice treated with NG-monomethyl-L-arginine (L-NMMA, 40 mg/kg; a nonselective NO synthase inhibitor) or aminoguanidine (AG, 10 mg/kg; a selective iNOS inhibitor) and in mice deficient in the iNOS gene (iNOS KO) mice. Tolerance to LPS was induced by means of three consecutive LPS (100 microg/kg) intraperitoneal injections at 24-h intervals. In wild-type mice, we observed a significant reduction of the febrile response to repeated administration of LPS. Injection of L-NMMA and AG markedly enhanced the febrile response to LPS in tolerant animals. Conversely, iNOS-KO mice repeatedly injected with LPS did not become tolerant to the pyrogenic effect of LPS. These data are consistent with the notion that NO modulates LPS tolerance in mice and that iNOS isoform is involved in NO synthesis during LPS tolerance.  相似文献   

4.
Acute inflammation induced by endotoxin (LPS) administration inhibits insulin-like growth factor (IGF-I) and growth hormone (GH) secretion. The aim of this study was to elucidate the role of glucocorticoids and nitric oxide (NO) in the effect of LPS on hypothalamic somatostatin gene expression. Adult male Wistar rats were injected with different doses of LPS (5, 10 and 100 microg/kg). Rats received two i.p. injections of LPS (at 17:30 and 8:30 h the following day) and were killed 4 h after the second injection. LPS administration at the dose of 100 microg/kg increased the hypothalamic somatostatin mRNA content, as well as the serum concentrations of corticosterone. Glucocorticoids do not seem to be involved in LPS-induced increase in hypothalamic somatostatin mRNA since adrenalectomy did not prevent this effect. In order to analyze the possible effect of NO, aminoguanidine, an inducible nitric oxide synthase inhibitor, was injected (100 mg/kg s.c.) simultaneously with LPS injection. Aminoguanidine administration did not modify somatostatin mRNA in saline injected rats, but it prevented LPS-induced increase in hypothalamic somatostatin mRNA. These data suggest that the stimulatory effect of endotoxin on hypothalamic somatostatin gene expression is not mediated by glucocorticoids, but instead by the increase in NO release.  相似文献   

5.
The role of prostaglandins and nitric oxide (NO), generated after peripheral lipopolysaccharide (LPS) administration, in the adaptation of hypothalamic-pituitary-adrenal (HPA) axis under stressful circumstances remains to be elucidated. The aim of the present study was to assess the effect of chronic repetitive restraint or social crowding stress on the involvement of nitric oxide and prostaglandins in the LPS-induced pituitary-adrenocortical response. Male Wistar rats were restrained in metal tubes 2 x 10 min/day or crowded in cages for 7 days prior to treatment. All compounds were injected i.p., cyclooxygenase (COX) and nitric oxide synthase (NOS) inhibitors 15 min before LPS. Two hrs after injection LPS induced a significant increase in ACTH and corticosterone secretion. Repeated restraint impaired more potently than crowding stress the LPS-induced HPA-response. Indomethacin, a non-selective COX inhibitor, considerably reduced the LPS-induced HPA response in non-stressed rats and to a lesser extent diminished this response in repeatedly restrained or crowded rats. Neuronal NOS inhibitor, Nomega-nitro-L-arginine decreased the LPS-induced HPA response, more potently in control than crowded rats. Aminoguanidine, an iNOS inhibitor, diminished the LPS-elicited ACTH response in crowded rats. These results indicate that prostaglandins and NO generated by neuronal and inducible NOS are involved in the LPS-induced HPA axis response under basal conditions and during its adaptation to chronic social stress circumstances.  相似文献   

6.
We investigated the role of nitric oxide (NO) in the interleukin 1beta (IL-1beta) and nicotine induced hypothalamic-pituitary-adrenal axis (HPA) responses, and a possible significance of CRH and vasopressin in these responses under basal and social stress conditions. Male Wistar rats were crowded in cages for 7 days prior to treatment. All compounds were injected i.p., nitric oxide synthase (NOS) inhibitors, alpha-helical CRH antagonist and vasopressin receptor antagonist 15 min before IL-1beta or nicotine. Identical treatment received control non-stressed rats. Plasma ACTH and serum corticosterone levels were measured 1 h after IL-1beta or nicotine injection. L-NAME (2 mg/kg), a general nitric oxide synthase (NOS) inhibitor, considerably reduced the ACTH and corticosterone response to IL-1beta (0.5 microg/rat) the same extent in control and crowded rats. CRH antagonist almost abolished the nicotine-induced hormone responses and vasopressin antagonist reduced ACTH secretion. Constitutive endothelial eNOS and neuronal nNOS inhibitors substantially enhanced the nicotine-elicited ACTH and corticosterone response and inducible iNOS inhibitor, aminoguanidine, did not affect these responses in non-stressed rats. Social stress significantly attenuated the nicotine-induced ACTH and corticosterone response. In crowded rats L-NAME significantly deepened the stress-induced decrease in the nicotine-evoked ACTH and corticosterone response. In stressed rats neuronal NOS antagonist did not alter the nicotine-evoked hormone responses and inducible NOS inhibitor partly reversed the stress-induced decrease in ACTH response to nicotine. These results indicate that NO plays crucial role in the IL-1beta-induced HPA axis stimulation under basal and social stress conditions. CRH and vasopressin of the hypothalamic paraventricular nucleus may be involved in the nicotine induced alterations of HPA axis activity. NO generated by eNOS, but not nNOS, is involved in the stress-induced alterations of HPA axis activity by nicotine.  相似文献   

7.
This study was designed to determine the role of endogenous prostaglandins (PG) and nitric oxide (NO) in the lipopolysaccharide (LPS)-induced ACTH and corticosterone secretion in conscious rats. LPS (0.5 and 1 mg/kg) given i.p. stimulated the hypothalamic-pituitary-adrenocortical (HPA) activity measured 2 h later. A non-selective cyclooxygenase inhibitor indomethacin (10 mg/kg i.p.), piroxicam (2 mg/kg i.p.), a more potent antagonist of constitutive cyclooxygenase (COX-1) and compound NS-398 (2 mg/kg i.p.), a selective inhibitor of inducible cyclooxygenase (COX-2) given 30 min before LPS (1 mg/kg i.p.) significantly diminished both the LPS-induced ACTH and corticosterone secretion. COX-2 blocker was the most potent inhibitor of ACTH secretion (72.3%). Nomega-nitro-L-arginine methyl ester (L-NAME 2 and 10 mg/kg i.p.), a non-selective nitric oxide synthase (NOS) blocker given 15 min before LPS did not substantially alter plasma ACTH and corticosterone levels 2 h later. Aminoguanidine (AG 100 mg/kg i.p.), a selective inducible nitric oxide synthase (iNOS) inhibitor, considerably enhanced ACTH and corticosterone secretion induced by a lower dose (0.5 mg/kg) of LPS and did not significantly alter this secretion after a larger dose (1 mg/kg) of LPS. L-NAME did not markedly affect the indomethacin-induced inhibition of ACTH and corticosterone response. By contrast, aminoguanidine abolished the indomethacin-induced reduction of ACTH and corticosterone secretion after LPS. These results indicate an opposite action of PG generated by cyclooxygenase and NO synthesized by iNOS in the LPS-induced HPA-response.  相似文献   

8.
The NADPH-diaphorase (NADPH-d) histochemical technique is commonly used to localize the nitric oxide (NO) produced by the enzyme nitric oxide synthase (NOS) in neural tissue. The expression of inducible nitric oxide synthase (iNOS) is induced in the late stage of cerebral ischemia, and NO produced by iNOS contributes to the delay in recovery from brain neuronal damage. The present study was performed to investigate whether the increase in nitric oxide production via inducible nitric oxide synthase was suppressed by the administration of aminoguanidine, a selective iNOS inhibitor, as it follows a decrease of NADPH-diaphorase activity (a marker for NOS) after four-vessel occlusion used as an ischemic model. The administration of aminoguanidine (100 mg/kg i.p., twice per day up to 3 days immediately after the ischemic insult) reduced the number of NADPH-diaphorase positive cells to control levels. Our results indicated that aminoguanidine suppressed NADPH-diaphorase activity, and also decreased the number of NADPH-diaphorase positive cells in the CA1 region of the hippocampus following ischemic brain injury.  相似文献   

9.
Abstract: Exposure of neuronal PC12 cells, differentiated by nerve growth factor, to tumor necrosis factor-α (TNF-α) and bacterial lipopolysaccharide (LPS) resulted in de novo synthesis of inducible nitric oxide synthase (iNOS) mRNA and protein with an increase up to 24 h. Brain NOS expression was unaffected. The induction of iNOS in differntiated PC12 cells was associated with cell death characterized by features of apoptosis, The NOS inhibitors N -monomethylarginine, aminoguanidine, and 2-amino-5,6-dihydro-6-methyl-4 H -1,3-thiazine HCl prevented TNF-α/LPS-induced cell death and DNA fragmentation, suggesting that the TNF-α/LPS-induced cell death is mediated by iNOS-derived NO. This hypothesis is supported by the finding that addition of l -arginine, which serves as a precursor and limiting factor of enzyme-derived NO production, potentiated TNF-α/LPS-induced loss of viability.  相似文献   

10.
Over the last three decades, experiments in several mammalian species have shown that the febrile response to bacterial endotoxin is attenuated late in pregnancy. More recent evidence has established that the expression of nitric oxide synthase (NOS) enzymes is increased in the brain late in pregnancy. The current study investigated the possible role of brain nitric oxide in mediating the phenomenon of fever suppression. Core body temperature (Tb) of near-term pregnant rats (day 19 and 20) was measured following inhibition of brain NOS and intraperitoneal injection of LPS (50 microg/kg); they were compared with both day 15 pregnant and virgin animals. Intracerebroventricular injection with an inhibitor of NOS, NG-monomethyl-L-arginine citrate (L-NMMA; 280 microg), in near-term pregnant rats restored the febrile response to LPS. As expected, near-term dams that received intracerebroventricular vehicle + IP LPS did not increase Tb, in contrast to the 1.0 +/- 0.2 degrees C rise in Tb in dams treated with ICV L-NMMA + IP LPS (P < 0.01). In virgin females and day 15 pregnant controls receiving this treatment, the increases in Tb were 1.5 +/- 0.3 degrees C and 1.6 +/- 0.4 degrees C, respectively. Thus, blockade of brain NOS restored the febrile response to LPS in near-term dams; at 5 h postinjection, Tb was 60-70% of that observed in virgins and day 15 pregnant animals. Intracerebroventricular L-NMMA alone did not induce a significant change in Tb in any group. These results suggest that the mechanism underlying the suppression of the febrile response in near-term pregnancy is mediated by nitric oxide signaling in the brain.  相似文献   

11.
In the brain, three isoforms of nitric oxide (NO) synthase (NOS), namely neuronal NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2), and endothelial NOS (eNOS, NOS3), have been implicated in biological roles such as neurotransmission, neurotoxicity, immune function, and blood vessel regulation, each isoform exhibiting in part overlapping roles. Previous studies showed that iNOS is induced in the brain by systemic treatment with lipopolysaccharide (LPS), a Gram-negative bacteria-derived stimulant of the innate immune system. Here we found that eNOS mRNA is induced in the rat brain by intraperitoneal injection of LPS of a smaller amount than that required for induction of iNOS mRNA. The induction of eNOS mRNA was followed by an increase in eNOS protein. Immunohistochemical analysis revealed that eNOS is located in astrocytes of both gray and white matters as well as in blood vessels. Induction of eNOS in response to a low dose of LPS, together with its localization in major components of the blood-brain barrier, suggests that brain eNOS is involved in early pathophysiologic response against systemic infection before iNOS is induced with progression of the infection.  相似文献   

12.
The aim of this study was to determine the mechanism of troglitazone action on nitric oxide (NO) production via inducible NO synthase (iNOS) in adipocytes in vitro and in vivo. The treatment of 3T3-L1 adipocytes with the combination of lipopolysaccharide (LPS), tumor necrosis factor-alpha and interferon-gamma synergistically induced de novo iNOS expression leading to enhanced NO production. The NO production was inhibited by co-treatment with aminoguanidine or N-nitro-L-arginine methylester hydrochloride. Troglitazone inhibited the NO production in a dose dependent manner by the suppression of iNOS expression. In the 24 week-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats, the mean weight and the blood glucose were 21% and 30%, respectively, higher than in their lean counterparts. The serum nitrite concentration was increased after injection of LPS (4 mg/kg, i.p.), more markedly in OLETF rats than in the lean rats. The epididymal fats from LPS-injected groups, but not the ones from the non-injected groups, expressed mRNA and protein of iNOS. Troglitazone pre-treatment blocked the LPS-induced expression of iNOS in adipose tissue and the increase in serum nitrite concentration. These results suggest that troglitazone inhibits the cytokine-induced NO production in adipocytes by blocking iNOS expression both in vitro and in vivo.  相似文献   

13.
Recent studies have shown that some nonsteroidal antiinflammatory drugs (NSAIDS) inhibited the inducible NO synthase (iNOS) without direct effect on the catalytic activity of this enzyme. This study was conducted to investigate the in vitro and in vivo effects of lysine clonixinate (LC) and indomethacin (INDO) on NOS activity in rat lung preparation. LC is a drug with antiinflammatory, antipyretic, and analgesic action. In the in vitro experiments, rats were injected with saline or lipopolysaccharide (LPS) and killed 6 h after treatment. Lung preparations were incubated with LC at 2.3 x 10(-5) M or 3.8 x 10(-5) M. The minimum concentration did not modify NOS activity in control or LPS-treated rats but the maximum dose inhibited increased NO production induced by LPS. Furthermore, INDO at 10(-6) M had no effect on enzymatic activity in control or LPS-treated rats. In the in vivo experiments, 40 mg/kg of LC were injected ip. Such a dose did not affect basal production of NO. When LC and LPS were injected simultaneously 6 h before sacrifice, a significant decrease in LPS-induced NOS activity was observed. INDO 10 mg/kg injected in control animals had no effect on NOS activity and did not block LPS induced stimulation of NO production when injected simultaneously. Finally, when LC (40 mg/kg) was injected 3 h after LPS, the enzymatic activity remained unchanged. Expression of iNOS was detected by Western blotting in rats treated with LPS plus 4, 10, 20, and 40 mg/kg of LC. The lowest dose was the only one showing no effect on LPS-induced increase of iNOS. In short, LC is a NSAID with inhibitory action on the expression of LPS-induced NOS, effect that was not seen with INDO in our experimental conditions.  相似文献   

14.
Male C57BL/6J mice deficient in nitric oxide synthase (NOS) genes (knockout) and control (wild-type) mice were implanted intra-abdominally with battery-operated miniature biotelemeters (model VMFH MiniMitter, Sunriver, OR) to monitor changes in body temperature. Intravenous injection of lipopolysaccharide (LPS; 50 microg/kg) was used to trigger fever in response to systemic inflammation in mice. To induce a febrile response to localized inflammation, the mice were injected subcutaneously with pure turpentine oil (30 microl/animal) into the left hindlimb. Oral administration (gavage) of N(G)-monomethyl-l-arginine (l-NMMA) for 3 days (80 mg. kg(-1). day(-1) in corn oil) before injection of pyrogens was used to inhibit all three NOSs (N(G)-monomethyl-d-arginine acetate salt and corn oil were used as control). In normal male C57BL/6J mice, l-NMMA inhibited the LPS-induced fever by approximately 60%, whereas it augmented fever by approximately 65% in mice injected with turpentine. Challenging the respective NOS knockout mice with LPS and with l-NMMA revealed that inducible NOS and neuronal NOS isoforms are responsible for the induction of fever to LPS, whereas endothelial NOS (eNOS) is not involved. In contrast, none of the NOS isoforms appeared to trigger fever to turpentine. Inhibition of eNOS, however, exacerbates fever in mice treated with l-NMMA and turpentine, indicating that eNOS participates in the antipyretic mechanism. These data support the hypothesis that nitric oxide is a regulator of fever. Its action differs, however, depending on the pyrogen used and the NOS isoform.  相似文献   

15.
Both brain and peripheral nitric oxide (NO) play a role in the control of blood pressure and circulatory homeostasis. Central NO production seems to counteract angiotensin II-induced enhancement of sympathetic tone. The aim of our study was to evaluate NO synthase (NOS) activity and protein expression of its three isoforms--neuronal (nNOS), endothelial NOS (eNOS) and inducible (iNOS)--in two brain regions involved in blood pressure control (diencephalon and brainstem) as well as in the kidney of young adult rats with either genetic (12-week-old SHR) or salt-induced hypertension (8-week-old Dahl rats). We have demonstrated reduced nNOS and iNOS expression in brainstem of both hypertensive models. In SHR this abnormality was accompanied by attenuated NOS activity and was corrected by chronic captopril treatment which prevented the development of genetic hypertension. In salt hypertensive Dahl rats nNOS and iNOS expression was also decreased in the diencephalon where neural structures important for salt hypertension development are located. As far as peripheral NOS activity and expression is concerned, renal eNOS expression was considerably reduced in both genetic and salt-induced hypertension. In conclusions, we disclosed similar changes of NO system in the brainstem (but not in the diencephalon) of rats with genetic and salt-induced hypertension. Decreased nNOS expression was associated with increased blood pressure due to enhanced sympathetic tone.  相似文献   

16.
17.
Acrylamide (ACR) is a known industrial neurotoxic chemical. Evidence suggests that ACR neurotoxic effect is related to brain neurotransmission disturbances. Since nitric oxide (NO) acts as a neurotransmission modulator and is produced by nitric oxide synthase (NOS), the neuronal NOS (nNOS) and inducible NOS (iNOS) expression pattern were determined in rat cerebral cortex and striatum after subchronic exposure to ACR. Using immunocytochemistry, the neuronal count of nNOS or optical density of iNOS from sections at three coronal levels, bregma 1.0, -0.4, and -2.3 mm, were compared between ACR-treated and control rats. At all three levels, nNOS expressions were uniformly decreased in most of the neocortical subregions following the treatment of ACR. At bregma level 1.0 mm, total numbers of nNOS expressing neurons were significantly decreased to 58.7% and 64.7% of the control in the cortex and striatum of ACR-treated rats, respectively. However, at the bregma level -2.3 mm, ACR treatment did not produce a significant difference in the numbers of nNOS expressing neurons both in the cortex and striatum. Contrary to nNOS, iNOS expressions were consistently increased to approximately 32% in the neocortex and 25% in the striatum, following the subchronic ACR treatment. These data suggest that subchronic ACR exposure involves compensatory mechanism on nNOS and iNOS expression to maintain the homeostasis of NO at the rostral part of the neocortex and the striatum. However, in the caudal brain, increased iNOS expression did not suppress nNOS expression. Therefore, the present study is consistent with the hypothesis that ACR toxicity is mediated through the disturbance to the NO signaling pathway and exhibits a rostrocaudal difference through the differential expressions of nNOS and iNOS in the neocortex and the striatum.  相似文献   

18.
19.
目的:观察鞘内注射选择性一氧化氮合酶(nNOS)和诱导型一氧化氮合酶(iNOS)抑制剂对吗啡依赖大鼠纳洛酮催促戒断反应、脊髓Fos蛋白表达和脊髓神经元nNOS和iNOS表达的影响,以探讨nNOS和iNOS在吗啡依赖和戒断反应中的作用。方法:在大鼠吗啡依赖和戒断模型上,采用行为学、免疫组织化学和Western blot方法观察鞘内应用nNOS抑制剂7-硝基吲哚(7-Ni)和iNOS抑制剂氨基胍(AG)对吗啡依赖大鼠纳洛酮催促戒断反应、脊髓Fos蛋白表达和脊髓神经元nNOS和iNOS表达的影响。结果:①鞘内注射7-Ni、AG可明显减轻吗啡依赖大鼠戒断症状,戒断组戒断症状评分为28.6±4.89,7-Ni组为16.2±3.99(P<0.01),AG组为22.94±4.0(P<0.05);戒断组TEA评分为13.5±2.55,7-Ni、AG组分别为7.5±2.56、10.5±2.71(P<0.05);②鞘内注射7-Ni、AG可减少脊髓背角Fos阳性神经元的数目,7-Ni、AG组为228.2±49.5、296.8±50.6,低于戒断组(380±71,P<0.05);③7-Ni、AG组nNOS和iNOS阳性神经元的数目分别为169±32、10.2±2.85,均低于戒断组(239±45,16.8±5.1,P<0.05),两给药组脊髓NOS蛋白的表达也显著减少。结论:nNOS和iNOS抑制剂能减轻吗啡依赖及戒断大鼠的戒断症状和在脊髓水平抑制nNOS和iNOS的表达,nNOS起主要作用而iNOS可能起辅助作用。  相似文献   

20.
Xia CM  Chen J  Wang J  Fan MX  Xiao F  Cao YX  Li L  Shen LL  Zhu DN 《生理学报》2008,60(4):453-461
许多研究表明,延髓头端腹外侧区(rostral ventrolateml medulla,RVLM)的NO/NOS系统参与心血管活动的中枢调节.本实验以结扎Wistar大鼠左冠状动脉前降支法建立急性心肌缺血(acute myocardial ischemia,AMI)动物模型,观察针刺"内关"穴改善AMI大鼠的心功能作用,同时检测大鼠RVLM区神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)和诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)表达的变化,进而探讨针刺治疗AMI的中枢机制.实验观察显示,AMI大鼠心功能各项指标减弱,伴随外周血去甲肾上腺素(norepinephrine,NE)和脑钠肽(brain natriuretic peptide,BNP)水平显著升高,同时RVLM区nNOS阳性神经元数和nNOS mRNA表达升高,而iNOS水平则降低.针刺"内关"穴(Pe 6)(每天30 min,连续5天)改善心功能,降低AMI大鼠血清中NE和BNP的水平,同时升高iNOS并降低nNOS在RVLM的表达.以上结果提示,针刺治疗心肌缺血的同时可以调节iNOS/NO和nNOS/NO在RVLM的变化,这可能与针刺通过调节RVLM区的NO含量进而降低交感传出,从而改善AMI大鼠的心功能有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号