首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of freezing tolerance by abscisic acid (ABA) or cold treatment in suspension cultured cells of Solanum commersonii was studied. Both ABA (50–100 μ M ) at 23°C and low temperature (4°C) increased freezing tolerance in cultured Solanum commersonii cells from a LT50 (freezing temperature at which 50% cells were killed) of —5°C (control) to —11.5°C in 2 days. Cold-induced freezing tolerance reached its maximum at 2 days and remained constant throughout the cold acclimation period of 11 days. The freezing tolerance induced by ABA, however, showed a rapid decline 2 to 5 days after initiation of ABA treatments. Addition of ABA (100 μ M ) to the culture medium at the inception of low temperature treatment did not enhance freezing tolerance of the cells beyond the level attainable by either treatment singly. Poly(A+)-RNA was isolated from the respective treatments, translated in a rabbit reticulocyte lysate cell free system, and the translation products were resolved by two dimensional polyacrylamide gel electrophoresis (ID-PAGE). Analysis of the in vitro translated products revealed changes in the abundance of approximately 26 products (encoding for polypeptides with M, of 14 to 69 kDa and pl of 4.90 to 6.60) in ABA-treated cells 12 h after treatment, and 20 (encoding for polypeptides with Mr of 12 to 69 kDa, with pl of 4.80 to 6.42) in cells exposed to 4°C for 12 h. There were only 5 novel translation products observed when the ABA-treated cells reached the highest level of freezing tolerance (2 days after the initiation of ABA treatment). Changes in translatable RNA populations during the induction of freezing tolerance in cells treated with either ABA or low temperature are discussed.  相似文献   

2.
Two varieties of winter wheat ( Triticum aestivum L.) differing in freezing resistance ("Holme" from Sweden, freezing resistant, and "Amandus" from Germany, less freezing resistant) were hardened for five weeks by gradually reducing the day/night temperature from 20°C/15°C during the first week to 2° C/0° C during the fifth week and the photoperiod from 15 to 9 h. This treatment increased the freezing resistance of both varieties in comparison to unhardened control plants. Hardening caused an increase in osmolarity of cell sap and in the levels of proline and abscisic acid (ABA). Increase in osmolarity preceded the increase in ABA level, and proline levels increased later than ABA levels. Holme had higher values of osmolarity as well as higher levels of ABA and proline. but the differences between the two varieties were significant only for proline. Since the pressure potential remained constant or increased slightly during the hardening period, it is suggested that the accumulation of ABA is due to the hardening process and not to simple water stress caused by cold-induced inhibition of water uptake by the root.
Spraying hardened plants with 10−4 M ABA 24 h before a freezing test increased freezing resistance in both varieties, but did not obliterate the differences in freezing resistance between the two varieties. Spraying hardened plants with an aqueous proline solution (10%, w/v) was without effect on freezing resistance. It is concluded that the hardening procedure causes an accumulation of ABA in winter wheat leaves and that ABA is involved in the chain of events leading to freezing resistance.  相似文献   

3.
The effects of ABA, 2,4-D, kinetin and cold exposure on the cold hardiness of Medicago sativa L. cell suspensions were investigated. Cultures treated with 5×10–5 M ABA at 2°C for 4 weeks in the absence of kinetin showed a 50% survival after freezing to –12.5°C, whereas cultures grown at 25°C under normal conditions tolerated freezing to only –3°C. The optimum ABA treatment of 5×10–5 M for 4 weeks was effective only in combination with cold exposure. Of six cell lines tested, all showed different degrees of induced cold hardiness. The results suggest that ABA alone cannot induce freezing tolerance on alfalfa cell suspension cultures and that the deletion of kinetin and combination of low temperature and ABA is critical for the induction of cold hardiness in alfalfa cell suspension cultures.Abbreviations ABA abscisic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - LT50 50% killing temperature  相似文献   

4.
Changes of proline biosynthesis in relation to high-temperature (35° C) injury were investigated in Gracilaria tenuistipitata var. liui Zhang et Xia. On exposure to 35° C, the specific growth rate decreased after 5 days while free proline levels increased gradually after 2 days and reached the maximal level on days 4–6 but decreased at day 7. The repair ability of thalli treated at 35° C by measuring the growth rate after transfer to 25° C for another 5 days decreased in thalli that had been grown at 35° C for more than 2 days, and the extent increased as treatment at 35° C was prolonged. After 4 days of treatment at 35° C, the activities of both ornithine δ-aminotransferase (δ-OAT; EC 2.6.11.3) and Δ1-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2) increased, but that of γ-glutamyl kinase (γ-GK; EC 2.7.2.11) remained unchanged, and that of glutamate-5-semialdehyde dehydrogenase (GSAd; EC 1.4.1.3) decreased. The application of 10 μM gabaculine, an irreversible inhibitor of δ-OAT, at 35° C recovered the growth ability but inhibited the increase of both δ-OAT activity and free proline level; its effects were reversed by 1 mM proline. G. saliconia, which is relatively tolerant to high temperature, showed a decrease of both δ-OAT activity and free proline level at 35° C. It seems that a stimulation of proline synthesis from the ornithine pathway via an increase in both δ-OAT and P5CR activities might be associated with high-temperature injury in G. tenuistipitata.  相似文献   

5.
Abstract.  Even though overwintering larvae of the rice stem borer, Chilo suppressalis , are freeze-tolerant, they cannot survive below −30 °C. Furthermore, nondiapausing larvae cannot survive freezing. However, the cause of death due to freezing is unclear. To identify the cause of death by freezing in larvae, those tissues most injured by low temperatures are identified using the vital stain trypan blue. In overwintering larvae, the midgut of dead larvae stains blue, and remarkable colour density differences between dead and surviving larvae are observed in the midgut. In nondiapausing larvae incubated at −10 °C for several hours, the fat body of dead larvae is strongly stained. Furthermore, increases in mortality with treatment time correspond with increases in the area of the fat body stained. Sterile nondiapausing larvae with lower supercooling points, below −20 °C, do not freeze at −10 °C and survive the treatment. However, all the larvae die when subjected to inoculative freezing at −10 °C, and the fat body stains blue. These results suggest that the midgut in overwintering larvae and the fat body in nondiapausing larvae have the lowest tolerance to freezing.  相似文献   

6.
Depending on the environmental conditions, imbibed seeds survive subzero temperatures either by supercooling or by tolerating freezing-induced desiccation. We investigated what the predominant survival mechanism is in freezing canola ( Brassica napus cv. Quest) and concluded that it depends on the cooling rate. Seeds cooled at 3°C h−1 or faster supercooled, whereas seeds cooled over a 4-day period to −12°C and then cooled at 3°C h−1 to−40°C did not display low temperature exotherms. Both differential thermal analysis and nuclear magnetic resonance (NMR) spectroscopy confirmed that imbibed canola seeds undergo freezing-induced desiccation at slow cooling rates. The freezing tolerance of imbibed canola seed (LT50) was determined by slowly cooling to −12°C for 48 h, followed with cooling at 3°C h−1 to −40°C, or by holding at a constant −6°C (LD50). For both tests, the loss in freezing tolerance of imbibed seeds was a function of time and temperature of imbibition. Freezing tolerance was rapidly lost after radicle emergence. Seeds imbibed in 100 μ M abscisic acid (ABA), particularly at 2°C, lost freezing tolerance at a slower rate compared with water-imbibed seeds. Seeds imbibed in water either at 23°C for 16 h, or 8°C for 6 days, or 2°C for 6 days were not germinable after storage at −6°C for 10 days. Seeds imbibed in ABA at 23°C for 24 h, or 8°C for 8 days, or 2°C for 15 days were highly germinable after 40 days at a constant −6°C. Desiccation injury induced at a high temperature (60°C), as with injury induced by freezing, was found to be a function of imbibition temperature and time.  相似文献   

7.
The interactive effects of solutes, potassium sorbate and incubation temperature on growth, heat resistance and tolerance to freezing of Zygosaccharomyces rouxii were investigated. Growth rates in media supplemented with glucose, sucrose or NaCl to a w 0.93 were more rapid than in unsupplemented media ( a w 0.99). Although growth in unsupplemented medium was lower at 35°C, incubation at 21°C or 35°C had little effect on growth in media supplemented with glucose and sucrose. The addition of 300 μg potassium sorbate/ml to media resulted in reduced growth rates, particularly at 35°C. Heat resistance of Z. rouxii was substantially greater in cultures previously incubated at 35°C than in cultures incubated at 21° in media both with and without 300 μg potassium sorbate/ml. Zygosaccharomyces rouxii was tolerant to freezing at - 18°C for up to 120 d in all test media supplemented with glucose, sucrose or NaCl. The addition of 300 μg potassium sorbate/ml to sucrose-supplemented media resulted in increased resistance to freezing in cultures previously incubated at 21°C. Sensitivity to freezing increased when cultures were incubated at 21°C in media not supplemented with solutes. Glucose and sucrose provided the best protection against inactivation by heating and freezing, regardless of the presence of potassium sorbate in growth media.  相似文献   

8.
The effects of proline additions to culture systems of Miscanthus x ogiformis Honda Giganteus' were investigated. Proline was added in concentrations of 0, 12.5, 25, 50, 100 or 300 mM to the callus induction and suspension culture media containing either Murashige and Skoog or N6 basal salts and 22.6 μM 2,4-dichlorophenoxyacetic acid. Shoot apices and leaves from in vitro-propagated shoots, and immature inflorescences from greenhouse-grown plants were used as explants for callus induction and formation. Suspension cultures initiated from embryogenic callus of immature inflorescences were used to test the effect of proline in suspension cultures. The proline additions affected the formation of embryogenic callus and the growth of suspension cultures. Improvements depended on the proline concentration and the basal salts of the medium. Addition of 12.5 to 50 mM proline to callus induction medium with Murashige and Skoog salts increased embryogenic callus formation on shoot apices and leaf explants while proline had no effect on embryogenic callus formation in medium with N6 salts. Increased growth with increasing proline concentration was obtained in suspension aggregates grown in medium with N6 salts, whereas proline only increased growth of suspension aggregates grown in medium with Murashige and Skoog salts at concentrations of 12.5 or 25 mM. A stimulating effect of proline on plant regeneration was observed in short-term cultures of callus as well as in long-term cultures of suspension aggregates. An optimum proline concentration for plant regeneration was found at 12.5 mM. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Liquid cultures of Bradyrhizobium japonicum were added in a 1:1 ratio to 20% aqueous skim milk, or centrifuged and the cells resuspended in 10% skim milk. The suspensions were stored at —20° or —80°C for 7 months and cell survival assessed. At —20°C, there was a decrease in the viable count of about two logs in liquid culture whilst for cells resuspended in 10% skim milk the decrease was limited to one log. The temperature of —80°C was found to be in itself protective and the surviving rhizobial cells maintained their infectivity and effectiveness. Thus appropriate freezing conditions provide a suitable method to store soybean rhizobia cells prior to preparing the legume inoculant.  相似文献   

10.
Primary and secondary induction requirements for flowering of Festuca rubra   总被引:3,自引:0,他引:3  
Root and shoot temperatures were varied independently to determine the importance of root temperature during cold acclimation. Spinach ( Spinacia oleracea L. cvs Harbin and Bloomsdale) plants were subjected to 20/20°C. 20/5°C, 5/20°C, and 5/5°C (shoot/root) temperature treatments. Leaf freezing tolerance, water potential, stomatal resistance, osmotic potential, and water content were measured at 0.25. 1.25, 3.25, and 7.25 days of treatment. There was no change in freezing tolerance or the water relations of the 20/20°C treated plants during the course of the experiment. Freezing tolerance was increased by the 5°C shoot temperature treatments, but was not enhanced by water stress induced by the low root temperature. Leaf water potential and water content decreased and stomatal resistance increased within 6 h in the 20/5°C plants. By day 3, osmotic potential began decreasing in the 20/5°C plants. Leaf water content, osmotic potential, and water potential decreased more gradually in plants grown with 5°C shoot temperature, irrespective of root temperature. Decreased water content and osmotic potential were not correlated with increased freezing tolerance as reported for other herbaceous crop plants.  相似文献   

11.
Differential thermal analysis (DTA) was used to determine the exothermic responses in dormant stems and excised lengths of stem of Salix dasyclados Wimmer subjected to artificial freezing treatments.
The presence of ice on the surfaces of intact stems restricted the mechanism of freezing avoidance to temperatures above –4°C. In contrast, excised lengths of stem started to freeze as soon as the ambient temperature fell below –2°C, demonstrating that extracellular ice formation takes place earlier if cut surfaces are present. Exposure of dormant excised lengths of stem to subfreezing temperatures for more than 8 weeks did not alter their nucleation temperature not their exothermic differential responses. Early extracellular crystallisation of freezable cellular water provides conditions that allow dormant Salix dasyclados stems or excised lengths of stem to survive extreme freezing stress.
Crystallisation of extracellular and cellular water took place in the cortex, and did not result in visual damage or reduced survival. This nucleation of extracellular water took place over the same temperature range whether the excised dormant lengths of stem were partly (bark only) or completely thawed. Exposure of dormant tissue to 20°C for up to 24 h did not alter the level of freezing tolerance, nor did it increase the susceptibility of excised lengths of stem to damage by extreme temperature fluctuations.  相似文献   

12.
Ectomycorrhizal fungi have been shown to survive sub-zero temperatures in axenic culture and in the field. However, the physiological basis for resistance to freezing is poorly understood. In order to survive freezing, mycelia must synthesise compounds that protect the cells from frost damage, and certain fungal-specific soluble carbohydrates have been implicated in this role. Tissue concentrations of arabitol, mannitol and trehalose were measured in axenic cultures of eight Hebeloma strains of arctic and temperate origin grown at 22, 12, 6 and 2 degrees C. In a separate experiment, mycelia were frozen to -5 degrees C after pre-conditioning at either 2 degrees C or 22 degrees C. For some, especially temperate strains, there was a clear increase in specific soluble carbohydrates at lower growth temperatures. Trehalose and mannitol were present in all strains and the highest concentrations (close to 2.5% and 0.5% dry wt.) were recorded only after a cold period. Arabitol was found in four strains only when grown at low temperature. Cold pre-conditioning enhanced recovery of mycelia following freezing. In four out of eight strains, this was paralleled by increases in mannitol and trehalose concentration at low temperature that presumably contribute towards cryoprotection. The results are discussed in an ecological context with regard to mycelial overwintering in soil.  相似文献   

13.
The role of ABA in freezing tolerance and cold acclimation in barley   总被引:4,自引:0,他引:4  
The role of ABA in freezing resistance in nonacclimated and cold‐acclimated barley ( Hordeum vulgare L.) was studied. Eleven nonacclimated cultivars differed in their LT50, ranging from −10.8 to −4.8°C. Sugars, free proline, soluble proteins and ABA were analyzed in nonacclimated cultivars and during cold acclimation of one cultivar. There was an inverse correlation between LT50 and both ABA and sucrose contents. Exogenous ABA caused a decrease in the freezing point of leaf tissue in the cultivar with the lowest level of endogenous ABA, but not in the cultivar with the highest level, suggesting that ABA in the latter may be near the optimum endogenous level to induce freezing tolerance. Plants of cv. Aramir treated with ABA or allowed to acclimate to cold temperature increased their soluble sugar content to a similar level. The LT50 of leaves of cold‐acclimated cv. Aramir decreased from −5.8 to −11.4°C, with biphasic kinetics, accumulating proline and soluble sugars with similar kinetics. The biphasic profile observed during cold acclimation could be a direct consequence of cryoprotectant accumulation kinetics. ABA and soluble protein accumulation showed a single step profile, associated mainly with the second phase of the LT50 decrease. Thus, a significant increase in endogenous ABA is part of the response of barley to low temperature and may be required as a signal for the second phase of cold acclimation. Endogenous ABA contents in the nonacclimated state may determine constitutive freezing tolerance.  相似文献   

14.
Abstract. Populations of Marenzelleria viridis in the Chester River (Kent County, Maryland) experience temperatures ranging from over 30°C in summer to near freezing in winter. Interestingly, M. viridis swims actively in winter. This observation led us to examine the relationship between locomotor capacity and temperature in individuals of M. viridis . Juvenile specimens were collected in February ("cold animals") and June ("warm animals"). Video analysis revealed that swimming is achieved by flexing the body in cyclic, helical waves. Wave frequencies were measured as an index of locomotor capacity at 5°C, 15°C, and 25°C. The mean wave frequencies of cold animals were 5.4 Hz at 5°C and 7.1 Hz at 15°C (Q10= 1.3); the mean wave frequencies of warm animals were 6.1 Hz at 15°C and 7.8 Hz at 25°C (Q10= 1.3). The effects of changes in water viscosity on wave frequency between 5–25°C were not significant. These results demonstrate that the temperature sensitivity of locomotor capacity in juvenile M. viridis is quite low. We conclude that low temperature sensitivity enables M. viridis to be active throughout the year.  相似文献   

15.
Abstract: The in situ freezing technique has been widely used to fix labile metabolites and cellular second messengers in cerebral cortex. In this study, we isolated specific brain regions at 0°C from coronal sections of frozen heads following in situ brain freezing and measured regional concentrations of labile metabolites and cellular messengers. These levels in the cortex were compared with those in cortical punches obtained at freezing temperature (less than −40°C) from the same in situ frozen brains and those of cortex dissected from decapitated animals. In both isoflurane- and pentobarbital-anesthetized animals, we observed that the levels of lactate, free fatty acids, inositol 1,4,5-trisphosphate, and diacylglycerol, as well as the proportion of protein kinase C associated with the membrane fraction, were similar in cortical punches taken at freezing temperature and those dissected at 0°C. However, with animals decapitated at room temperature, cortical and hippocampal levels of lactate, free fatty acids, and inositol 1,4,5-trisphosphate and the proportion of membrane protein kinase C were significantly higher than those of corresponding brain regions isolated at 0°C from in situ frozen brains ( p < 0.05). These results indicate that dissection of cortex and hippocampus at 0°C following in situ freezing will eliminate decapitation-induced production of artifacts and changes in the levels of cellular second messengers such as inositol 1,4,5-trisphosphate, diacylglycerol, and protein kinase C. The present technique, used in conjunction with in situ freezing, will fix cellular second messengers and labile metabolites in several regions of brain and may facilitate accurate characterization of molecular and cellular mechanisms underlying CNS function.  相似文献   

16.
Reflexed saltmarsh-grass suspension cultures produced by seed callus were frozen to the liquid nitrogen temperature. Cooling rates, cryoprotectants and holding times were taken as a function of transfer temperatures. The highest survival of cells (45%) was found at a freezing rate of 1°C min-1, without cryoprotectant treatments. The cryoprotectants (proline, dimethyl sulphoxide, glycerol), used at different concentrations and transfer temperatures, increased the survival rate. The maximum value was 78% at 12.5% (w/v) of proline with –30°C transfer temperature. Considerable improvement of viability (from 0% to 95%) among the 12.5 and 15.0% (v/v) dimethyl sulphoxide cryopreserved cells was achieved by holding them at – 20°C for 10–30 min before plunging into the liquid nitrogen. A 20 min holding time at 15.0% (v/v) glycerol level and – 30°C transfer temperature significantly enhanced the viability of the explants from 42% to 92%. Plants were successfully regenerated from cells cryopreserved with proline (w/v) and dimethyl sulfoxide (v/v) levels of 12.5 and 15.0%, respectively.  相似文献   

17.
The influence of temperature (10°C and 25°C) on the survival and growth of Saccharomyces cerevisiae and Kloeckera apiculata was examined in mixed and pure cultures during fermentation in apple juice. The growth reached by S. cerevisiae did not seem to be affected by temperature and the presence of K. apiculata . However, the growth and survival of K. apiculata , both in single and mixed cultures, were substantially enhanced at 10°C. The highest amount of ethyl acetate was produced by K. apiculata in pure culture at 10°C. Nevertheless, this concentration was lowest when both yeasts were fermented together at 10°C and 25°C.  相似文献   

18.
Different lines of cell suspension cultures of Taxus × media Rehd. and Taxus floridana Nutt. were cryopreserved with a two-step freezing method using a simple and inexpensive freezing container instead of a programmable freezer. Four to seven days old suspension cell cultures were precultured in growth medium supplemented with 0.5 M mannitol for 2 d. The medium was then replaced with cryoprotectant solution (1 M sucrose, 0.5 M glycerol and 0.5 M dimethylsulfoxide) and the cells incubated on ice for 1 h. Before being plunged into liquid nitrogen, cells were frozen with a cooling rate of approximately −1 °C per min to −80 °C. The highest post-thaw cell viability was 90 %. The recovery was line dependent. The cryopreservation procedure did not alter the nuclear DNA content of the cell lines. The results indicate that cryopreservation of Taxus cell suspension cultures using inexpensive freezing container is possible.  相似文献   

19.
Nine pure cultures of species of Enterobacteriaceae were stressed by rapid freezing in tryptone soya broth (TSB) to — 22°C and subsequent storage at that temperature for 7 d. About one to two log cycles kill and at least one additional log cycle sublethal impairment was achieved. Numbers of colonies of these cultures in poured plates of violet red bile glucose (VRBG) agar, with 67 u/ml of catalase added at 47°C, were only slightly higher than those in plain VRBG, both incubated overnight at 30°C. Two hours incubation of TSB suspensions at 17–25° C resulted in almost complete restoration of the ability of cells to develop colonies in VRBG, without, however, leading to any significant multiplication.
Similar experiments with 32 samples of frozen minced meat, 27 samples of frozen surface water, 18 of frozen chicken liver and 14 of fresh sausage substantiated the results obtained in the studies on pure cultures.
In the experiments with the nine pure cultures the influence of the nutrient composition of the solid enumeration media: 'minimal' agar, TSB agar (TSBA) and Mueller-Hinton agar with Polyvitex nutrient supplement (MHA), on the recovery of Enterobacteriaceae stressed by freezing was also studied. Colony numbers in TSBA and MHA were virtually identical. The glucose mineral salts medium led to lower recovery, indicating that so-called 'minimal medium recovery' of stressed bacterial populations is not a common phenomenon.  相似文献   

20.
Antifreeze proteins are secreted by winter rye cells in suspension culture   总被引:3,自引:0,他引:3  
During cold-acclimation, winter rye ( Secale cereale L) leaves secrete antifreeze proteins (AFPs) into the apoplast. The AFPs bind to ice and modify its growth, which is easily observed in vitro . However, it is not yet known whether in planta AFPs interact with ice or whether they exert cryoprotective effects. These experiments are difficult to conduct with intact plants, so the aim of this work was to determine whether AFPs are produced in response to cold temperature in cell culture and to examine their function by using suspension cells. We showed that suspension cells secreted three of the six known winter rye AFPs into the culture medium during acclimation at 4°C. These AFPs were not present in washed suspension cells, thus indicating that they are not firmly bound to the cell walls. In order to examine the function of extracellular AFPs, non-acclimated (NA) winter rye suspension cells and protoplasts isolated from NA winter rye leaves were then frozen and thawed in the presence of AFPs extracted from cold-acclimated winter rye leaves. The AFPs had no effect on the survival of NA protoplasts after freezing; however, they lowered the lethal temperature at which 50% of the cells are killed by freezing (LT50) of NA suspension cells by 2.5°C. We conclude that low above-zero temperatures induce winter rye suspension cells to secrete AFPs free in solution where they can protect intact suspension cells, but not protoplasts, from freezing injury, presumably by interacting with extracellular ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号