首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1988,106(4):1151-1160
The cytoskeleton in squid photoreceptor microvilli was studied by freeze-substitution electron microscopy combined with rapid freezing using liquid helium, under dark-adapted and light-illuminated conditions. In the dark-adapted microvilli, actin filaments were regularly associated with granular structures on their surface; these granular structures were cross-linked to the rhodopsin-bearing plasma membranes through slender strands. Upon exposure to light, the granular components detached from the actin filaments, which then appeared to be fragmented and/or depolymerized. These observations have led us to conclude that light stimulation triggers the breakdown of the microvillar actin filament complex in squid photoreceptor cells. The results are discussed with special reference to the physiological role of actin filaments in photoreception.  相似文献   

2.
Salmonella bacteria cause more than three million deaths each year. They hijack cells and inject among other proteins SipA via a "molecular syringe" into the cell, which can tether actin subunits in opposing strands to form mechanically stabilized filaments which rapidly reshape the cells surface into extended ruffles, leading to bacterial internalization. Exactly how these ruffles form at a single filament level remains unknown. Our real time total internal fluorescence microscopy observations show that both bidirectional elongation of actin by SipA as well as end-to-end annealing of SipA-actin filaments are rapid processes. Complementary electron microscopy investigations demonstrate that crowding agents in vitro readily induce stiff bundles of SipA-actin filaments. Taken together these three effects, rapid SipA induced actin polymerization, filament annealing and bundle formation due to molecular crowding can explain how Salmonella invades cells at molecular level.  相似文献   

3.
Maruyama Y  Yasuda R  Kuroda M  Eto Y 《PloS one》2012,7(4):e34489
Recently, we reported that calcium-sensing receptor (CaSR) is a receptor for kokumi substances, which enhance the intensities of salty, sweet and umami tastes. Furthermore, we found that several γ-glutamyl peptides, which are CaSR agonists, are kokumi substances. In this study, we elucidated the receptor cells for kokumi substances, and their physiological properties. For this purpose, we used Calcium Green-1 loaded mouse taste cells in lingual tissue slices and confocal microscopy. Kokumi substances, applied focally around taste pores, induced an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a subset of taste cells. These responses were inhibited by pretreatment with the CaSR inhibitor, NPS2143. However, the kokumi substance-induced responses did not require extracellular Ca(2+). CaSR-expressing taste cells are a different subset of cells from the T1R3-expressing umami or sweet taste receptor cells. These observations indicate that CaSR-expressing taste cells are the primary detectors of kokumi substances, and that they are an independent population from the influenced basic taste receptor cells, at least in the case of sweet and umami.  相似文献   

4.
Development and morphological changes of human gustatory papillaeduring postovulatory weeks 6–15 have been studied usingscanning and transmission electron microscopy. The first papillaof the tongue appears around postovulatory week 6 in its caudalmidline near the foramen caecum. In contrast, the dorsal epitheliumof the anterior part of the tongue shows only small hillock-or papilla-like elevations from week 6 on, which comprise anaggregation of 5–20 epithelial cells. From week 7 on,most prominent fungiform papillae develop near the median sulcusand at the margins of the anterior part of the tongue. At theirtops, the first primitive taste pores are found around week10; these are often covered with processes of adjacent epithelialcells. Most pores, however, develop around weeks 14–15.The maturation of taste buds does not coincide with the appearanceof taste pores, since taste bud cells are not fully differentiatedin the observed period of time. Fungiform papillae are developedbefore filiform papillae, which do not occur within the first15 weeks of gestation. Fungiform papillae tend to grow betweenweeks 8 and 15 of gestation, whereas the size of vallate papillaeseems to be constant during this period. Chem. Senses 22: 601–612,1997.  相似文献   

5.
Lai CK  Jeng KS  Machida K  Lai MM 《Journal of virology》2008,82(17):8838-8848
The hepatitis C virus (HCV) RNA replication complex (RC), which is composed of viral nonstructural (NS) proteins and host cellular proteins, replicates the viral RNA genome in association with intracellular membranes. Two viral NS proteins, NS3 and NS5A, are essential elements of the RC. Here, by using immunoprecipitation and fluorescence resonance energy transfer assays, we demonstrated that NS3 and NS5A interact with tubulin and actin. Furthermore, immunofluorescence microscopy and electron microscopy revealed that HCV RCs were aligned along microtubules and actin filaments in both HCV replicon cells and HCV-infected cells. In addition, the movement of RCs was inhibited when microtubules or actin filaments were depolymerized by colchicine and cytochalasin B, respectively. Based on our observations, we propose that microtubules and actin filaments provide the tracks for the movement of HCV RCs to other regions in the cell, and the molecular interactions between RCs and microtubules, or RCs and actin filaments, are mediated by NS3 and NS5A.  相似文献   

6.
Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion.  相似文献   

7.
The significance of actin cytoskeleton on cell growth was historically studied using toxic drugs, such as cytochalasin. However, it is possible that unpredictable effects of these agents may have influenced the reported observations. In our study, we have established a drug-free system using cofilin overexpression to investigate the relationship between actin filaments and cell cycle progression. Cofilin is a member of the actin depolymerization factor (ADF)/cofilin family, cofilin cDNA was cloned to a tetracycline-inducible gene expression vector and stably transfected to human lung cancer H1299 epithelial cells. Destabilization of actin filaments and morphological change was detected in cofilin overexpressing cells by actin analysis and microscopy, respectively. Measurements of growth rates showed that cell proliferation was retarded in cells with overexpressed cofilin. Also, cell cycle analysis showed that approx 90% of cofilin overexpressing cells were arrested in G1 phase, which is consistent with previous reports that drug-mediated disruption of actin filaments can cause G1 phase arrest. Taken together, cofilin overexpression cell model provides evidence that the effects of actin cytoskeletal destabilization on cell cycle progression can be studied using molecular approach instead of drug.  相似文献   

8.
The study of actin in regulated exocytosis has a long history with many different results in numerous systems. A major limitation on identifying precise mechanisms has been the paucity of experimental systems in which actin function has been directly assessed alongside granule content release at distinct steps of exocytosis of a single secretory organelle with sufficient spatiotemporal resolution. Using dual-color confocal microscopy and correlative electron microscopy in human endothelial cells, we visually distinguished two sequential steps of secretagogue-stimulated exocytosis: fusion of individual secretory granules (Weibel-Palade bodies [WPBs]) and subsequent expulsion of von Willebrand factor (VWF) content. Based on our observations, we conclude that for fusion, WPBs are released from cellular sites of actin anchorage. However, once fused, a dynamic ring of actin filaments and myosin II forms around the granule, and actomyosin II contractility squeezes VWF content out into the extracellular environment. This study therefore demonstrates how discrete actin cytoskeleton functions within a single cellular system explain actin filament-based prevention and promotion of specific exocytic steps during regulated secretion.  相似文献   

9.
Whole-mount cell preparations of cultured rat 3Y1 cells were examined by stereo electron microscopy to identify the ultrastructural localization of concanavalin A (Con A) receptors in the plasma membrane, and to clarify the relationship between Con A receptors and cytoskeletal components. Well spread monolayer cells were extracted with saponin, briefly fixed, and then partially broken open with shearing force to facilitate the introduction of antibodies for identification of actin filaments. Stereo electron microscopy of such treated cells revealed a 3-dimensional image of filamentous structures such as fine filaments, microtubules (MT) and endoplasmic reticulum (ER) in the flattened areas of each cell. Just beneath the plasma membrane were meshworks of actin-containing fine filaments, as identified by an immunogold staining method. Microtubules and ER were observed to be either directly or indirectly associated with this meshwork. The broken open part of each cell exhibited a meshwork of filaments which were associated with the cytoplasmic surface of the plasma membrane. Some of the filaments were connected to the plasma membrane either by their ends or by their lateral surfaces. The localization of Con A receptors was examined by binding colloidal gold-labelled Con A to the surface of fixed, saponin-extracted cells. Virtually all gold particles bound externally at the same membrane sites where intracellular actin filaments attached internally. The observations strongly suggest that the distribution of Con A receptors was regulated by the underlying meshwork of actin filaments.  相似文献   

10.
An earlier report suggested that actin and myosin I alpha (MMIalpha), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIalpha were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIalpha. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIalpha impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIalpha contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors.  相似文献   

11.
The actin filament network at the leading edge of motile cells relies on localized branching by Arp2/3 complex from "mother" filaments growing near the plasma membrane. The nucleotide bound to the mother filaments (ATP, ADP and phosphate, or ADP) may influence the branch dynamics. To determine the effect of the nucleotide bound to the subunits of the mother filament on the formation and stability of branches, we compared the time courses of actin polymerization in bulk samples measured using the fluorescence of pyrene actin with observations of single filaments by total internal reflection fluorescence microscopy. Although the branch nucleation rate in bulk samples was nearly the same regardless of the nucleotide on the mother filaments, we observed fewer branches by microscopy on ADP-bound filaments than on ADP-P(i)-bound filaments. Observation of branches in the microscope depends on their binding to the slide. Since the probability that a branch binds to the slide is directly related to its lifetime, we used counts of branches to infer their rates of dissociation from mother filaments. We conclude that the nucleotide on the mother filament does not affect the initial branching event but that branches are an order of magnitude more stable on the sides of new ATP- or ADP-P(i) filaments than on ADP-actin filaments.  相似文献   

12.
The effects of acrylamide (ACR), nocodazole, and latrunculin were studied on intracellular transport and cytoskeletal morphology in cultured Xenopus laevis melanophores, cells that are specialized for regulated and bidirectional melanosome transport. We used three different methods; light microscopy, fluorescence microscopy, and spectrophotometry. ACR affected the morphology of both microtubules and actin filaments in addition to inhibiting retrograde transport of melanosomes but leaving dispersion unaffected. Using the microtubule-inhibitor nocodazole and the actin filament-inhibitor latrunculin we found that microtubules and actin filaments are highly dependent on each other, and removing either component dramatically changed the organization of the other. Both ACR and latrunculin induced bundling of microtubules, while nocodazole promoted formation of filaments resembling stress fibers organized from the cell center to the periphery. Removal of actin filaments inhibited dispersion of melanosomes, further concentrated the central pigment mass in aggregated cells, and induced aggregation even in the absence of melatonin. Nocodazole, on the other hand, prevented aggregation and caused melanosomes to cluster and slowly disperse. Dispersion of nocodazole-treated cells was induced upon addition of alpha-melanocyte-stimulating hormone (MSH), showing that dispersion can proceed in the absence of microtubules, but the distribution pattern was altered. It is well established that ACR has neurotoxic effects, and based on the results in the present study we suggest that ACR has several cellular targets of which the minus-end microtubule motor dynein and the melatonin receptor might be involved. When combining morphological observations with qualitative and quantitative measurements of intracellular transport, melanophores provide a valuable model system for toxicological studies.  相似文献   

13.
The current hypothesis of cytokinesis suggests that contractile forces in the cleavage furrow are generated by a circumferential band of actin filaments. However, relatively little is known about the global organization of actin filaments in dividing cells. To approach this problem we have used fluorescence-detected linear dichroism (FDLD) microscopy to measure filament orientation, and digital optical sectioning microscopy to perform three-dimensional reconstructions of dividing NRK cells stained with rhodamine-phalloidin. During metaphase, actin filaments in the equatorial region show a slight orientation along the spindle axis, while those in adjacent regions appear to be randomly distributed. Upon anaphase onset and through cytokinesis, the filaments become oriented along the equator in the furrow region, and along the spindle axis in adjacent regions. The degree of orientation appears to be dependent on cell-cell and cell-substrate adhesions. By performing digital optical sectioning microscopy on a highly spread NRK subclone, we show that actin filaments organize as a largely isotropic cortical meshwork in metaphase cells and convert into an anisotropic network shortly after anaphase onset, becoming more organized as cytokinesis proceeds. The conversion is most dramatic on the adhering ventral surface which shows little or no cleavage activity, and results in the formation of large bundles along the equator. On the dorsal surface, where cleavage occurs actively, actin filaments remain isotropic, showing only subtle alignment late in cytokinesis. In addition, stereo imaging has led to the discovery of a novel set of filaments that are associated with the cortex and traverse through the cytoplasm. Together, these studies provide important insights into the process of actin remodeling during cell division and point to possible additional mechanisms for force generation.  相似文献   

14.
The contractile ring, which is required for cytokinesis in animal and yeast cells, consists mainly of actin filaments. Here, we investigate the directionality of the filaments in fission yeast using myosin S1 decoration and electron microscopy. The contractile ring is composed of around 1,000 to 2,000 filaments each around 0.6 mum in length. During the early stages of cytokinesis, the ring consists of two semicircular populations of parallel filaments of opposite directionality. At later stages, before contraction, the ring filaments show mixed directionality. We consider that the ring is initially assembled from a single site in the division plane and that filaments subsequently rearrange before contraction initiates.  相似文献   

15.
Demonstration of prominent actin filaments in the root columella   总被引:8,自引:0,他引:8  
  相似文献   

16.
Myoepithelial cells from mammary glands, the modified sweat glands of bovine muzzle, and salivary glands have been studied by electron microscopy and by immunofluorescence microscopy in frozen sections in an attempt to further characterize the type of intermediate-sized filaments present in these cells. Electron microscopy has shown that all myoepithelial cells contain extensive meshworks of intermediate-sized (7--11-nm) filaments, many of which are anchored at typical desmosomes or hemidesmosomes. The intermediate-sized filaments are also intimately associated with masses of contractile elements, identified as bundles of typical 5--6-nm microfilaments and with characteristically spaced dense bodies. This organization resembles that described for various smooth muscle cells. In immunofluorescence microscopy, using antibodies specific for the various classes of intermediate-sized filaments, the myoepithelial cells are strongly decorated by antibodies to prekeratin. They are not specifically stained by antibodies to vimentin, which stain mesenchymal cells, nor by antibodies to chick gizzard desmin, which decorate fibrils in smooth muscle Z bands and intercalated disks in skeletal and cardiac muscle of mammals. Myoepithelial cells are also strongly stained by antibodies to actin. The observations show (a) that the epithelial character, as indicated by the presence of intermediate-sized filaments of the prekeratin type, is maintained in the differentiated contractile myoepithelial cell, and (b) that desmin and desmin-containing filaments are not generally associated with musclelike cell specialization for contraction but are specific to myogenic differentiation. The data also suggest that in myoepithelial cells prekeratin filaments are arranged--and might function--in a manner similar to the desmin filaments in smooth muscle cells.  相似文献   

17.
Mobility of filamentous actin in living cytoplasm   总被引:10,自引:8,他引:2       下载免费PDF全文
《The Journal of cell biology》1987,105(6):2811-2816
Filamentous actin in living cultured cells was labeled by microinjecting trace amounts of rhodamine-phalloidin (rh-pha) as a specific, high-affinity probe. The microinjection caused no detectable effect on cell morphology or cell division. The distribution of rh-pha- labeled filaments was then examined in dividing cells using image- intensified fluorescence microscopy, and the exchangeability of labeled filaments along stress fibers was studied during interphase using fluorescence recovery after photobleaching. rh-pha showed a rapid concentration at the contractile ring during cell division. In addition, recovery of fluorescence after photobleaching occurred along stress fibers with a halftime as short as 8 min. These observations suggest that at least some actin filaments undergo continuous movement and reorganization in living cells. This dynamic process may play an important role in various cellular functions.  相似文献   

18.
F-actin and microtubule co-distribution and interaction were studied during anaphase-telophase. Rapid and drastic changes in the cytoskeleton during these particular stages were studied in isolated plant endosperm cells of the blood lily. These wall-free cells can be considered as natural dividing protoplasts. As identified previously, an F-actin cytoskeletal network characterized the plant cortex and formed an elastic cage around the spindle, remaining throughout interphase, mitosis and cytokinesis. Actin was specifically labeled by fluorescent phalloidin and/or monoclonal antibodies. Gold-labelled secondary antibodies were used for ultrastructural observations and silver-enhancement was applied for video-enhanced microscopy. Microtubule and microfilament dynamics and interaction were studied using drug antagonists to actin (cytochalasins B, D) and to tubulin (colchicine). This permitted precise correlations to be made between chromosome movement inhibition and alteration in the actin/tubulin cytoskeleton. During anaphase chromosome migration, the cortical actin network was stretched along the microtubular spindle, while it remained homogeneous when anaphase was inhibited by colchicine. Cytochalasins did not inhibit chromosome movement but altered actin distribution. A new population of actin filaments appeared at the equator in late anaphase before the microtubular phragmoplast was formed and contributed to cell plate formation. Our conclusion is that F-actin-microtubule interaction may contribute to the regulatory mechanism of plant cytokinesis.  相似文献   

19.
Localization and organization of actin in melanophores   总被引:2,自引:1,他引:1       下载免费PDF全文
Melanophores of the angelfish, Pterophyllum scalare, were studied in an attempt to demonstrate the existence of actin in these cells although microfilaments had previously not been found. By use of a variety of procedures, including immunofluorescence microscopy of intact and detergent-extracted cells, transmission electron microscopy, high voltage electron microscopy of whole-mount preparations, and labeling with heavy meromyosin-subfragment 1, the presence of a loose cortical mesh of actin filaments is demonstrated. In addition, a more parallel array of filaments is detected in microspike- and microvillus-like surface projections. There seem to be no changes in the arrangement of these filaments as a function of the state of pigment distribution. No actin filaments could be found in association with pigment granules or microtubules in more central cell portions. For reasons presently unknown, the preservation of the cortical filament network in lysed cell preparations depends strongly on the presence of an intact microtubular system. The involvement of this subplasmalemmal actin filament network in pigment granule transport remains unclear.  相似文献   

20.
Summary. Pears (Pyrus pyrifolia L.) have an S-RNase-based gametophytic self-incompatibility system, and S-RNases have also been implicated in self-pollen or genetically identical pollen rejection. Tip growth of the pollen tube is dependent on a functioning actin cytoskeleton. In this study, configurations of the actin cytoskeleton in P. pyrifolia pollen and effects of stylar S-RNases on its dynamics were investigated by fluorescence and confocal microscopy. Results show that actin filaments in normal pollen grains exist in fusiform or circular structures. When the pollen germinates, actin filaments assembled around one of the germination pores, and then actin bundles oriented axially throughout the shank of the growing tube. There was a lack of actin filaments 5–15 μm from the tube tip. When self-stylar S-RNase was added to the basal medium, pollen germination and tube growth were inhibited. The configuration of the actin cytoskeleton changed throughout the culturing time: during the first 20 min, the actin configurations in the self-pollen and tube were similar to the control; after 20 min of treatment, the actin filaments in the pollen tube gradually moved into a network running from the shank to the tip; finally, there was punctate actin present throughout the whole tube. Although the actin filaments of the self-pollen grain also disintegrated into punctate foci, the change was slower than in the tube. Furthermore, the alterations to the actin cytoskeleton occurred prior to the arrest of pollen tube growth. These results suggest that P. pyrifolia stylar S-RNase induces alterations in the actin cytoskeleton in self-pollen grains and tubes. Correspondence: Shao-ling Zhang, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People’s Republic of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号