首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The effect of calcium (Ca2+) on Trifolium repens L. seedlings subjected to cadmium (Cd2+) stress was studied by investigating plant growth and changes in activity of antioxidative enzymes. Physiological analysis was carried out on seedlings cultured for 2 weeks on half-strength Hoagland medium with Cd2+ concentrations of 0, 400 and 600 μM, and on corresponding medium supplied with CaCl2 (5 mM). Exposure to increasing Cd2+ reduced the fresh weight of the upper part (stems + leaves) of the seedlings more strongly than that of the root system. In both parts of T. repens seedlings H2O2 level and lipid peroxidation increased. In the upper part, Cd2+ exposure led to a significant decrease in the activity of superoxide dismutase, catalase and glutathione peroxidase and an increase in ascorbate peroxidase activity. In contrast, the roots showed an increase in the activity of antioxidative enzymes under Cd2+ stress. Ca2+ addition to medium reduced the Cd2+ accumulation, and considerably reversed the Cd2+-induced decrease in fresh mass as well as the changes in lipid peroxidation in the both parts of T. repens seedlings. Ca2+ application diminished the Cd2+ effect on the activity of antioxidative enzymes in the upper part, even though it did not significantly affect these enzymes in the roots. So the possible mechanisms for the action of Ca2+ in Cd2+ stress were considered to reduce Cd2+ accumulation, alleviate lipid peroxidation and promote activity of antioxidative enzymes.  相似文献   

2.
Enhanced cadmium accumulation in maize roots—the impact of organic acids   总被引:4,自引:0,他引:4  
Low molecular weight organic acids are important components of root exudates and therefore, knowledge regarding the mechanisms of cadmium (Cd) uptake and distribution within plants under the influence of organic acids, is necessary for a better understanding of Cd behavior in the plant–soil system. In this study, acetic and malic acids increased the uptake of Cd by maize (Zea mays L. cv. TY2) roots and enhanced Cd accumulation in shoots under hydroponic conditions. Concentration-dependent net Cd influx in the presence and absence of organic acids could be resolved into linear and saturable components. The saturable component followed Michaelis–Menten kinetics, which indicated that Cd uptake across the plasma membrane was transporter-mediated. While the K m values were similar, the V max values in the presence of acetic and malic acids were respectively 6.0 and 3.0 times that of the control. Zinc transporters were the most probable pathways for Cd accumulation. It was hypothesized that Cd(II)–organic acid complexes associated with the root zone, could decompose and liberate Cd2+ for subsequent absorption by maize roots; and that in the layer of the roots or within the root free space, depletion of Cd2+ was buffered by the presence of Cd(II)–organic acid complexes. Plant response to elevated Cd levels involved overproduction of organic acids in maize roots as a resistance mechanism to alleviate Cd toxicity.  相似文献   

3.
Cadmium accumulation, the relative content of different chemical forms of Cd, as well as the toxic effect of Cd on nutrient element uptake, physiological parameters, and ultrastructure of Sagittaria sagittifolia L. seedlings were determined after the seedlings were exposed to different Cd concentrations for 4 days. The results showed that S. sagittifolia had the ability to accumulate large amounts of Cd. In the root, stem, and bulb, the predominant chemical Cd forms were NaCl extractable. With an increase in the Cd2+ concentration, the chlorophyll content, the relative membrane penetrability (RMP) of root cells, peroxidase (POD) activity, superoxide dismutase (SOD) activity in leaves, malondiadehyde (MDA) content and the superoxide anion (O2) generation rate in roots all decreased following an initial increase. On the other hand, catalase (CAT) activity, SOD activity in roots, MDA content, and the generation rate of O2 in leaves all increased gradually. The toxic effect of Cd2+ was more severe on roots than on leaves at the same concentration. Cadmium affected the mineral nutrition balance; mainly, it promoted the uptake of Ca, Cu, Mn, and Fe, while inhibited Mg, Na, and K uptake. The physiological toxic effect of Cd2+ was close to the ultrastructural damage induced by Cd contamination. A significant correspondence was observed between the Cd dose and its toxic effect. Cadmium could destroy the normal ultrastructure, disturb the ion balance, and interfere with cell metabolism.  相似文献   

4.
The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in l-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 μg ml−1) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

5.
Because of its prolific growth, oilseed rape (Brassica napus L.) can be grown advantageously for phytoremediation of the lands contaminated by industrial wastes. Therefore, toxic effect of cadmium on the germination of oilseed rape, the capability of plants for cadmium phytoextraction, and the effect of exogenous application of plant growth regulators to mitigate phytotoxicity of cadmium were investigated. For the lab study of seedlings at early stage, seeds were grown on filter papers soaked in different solutions of Cd2+ (0, 10, 50, 100, 200 and 400 μM). In greenhouse study, seedlings were grown in soil for 8 weeks, transferred to hydroponic pots for another 6 weeks growth, and then treated with plant growth regulators and cadmium. Four plant growth regulators viz. jasmonic acid (12.5 μM), abscisic acid (10 μM), gibberellin (50 μM) and salicylic acid (50 μM); and three levels of Cd2+ (0, 50 and 100 μM) were applied. Data indicated that lower concentration of Cd2+ (10 μM) promoted the root growth, whereas the severe stresses (200 or 400 μM) had negative effect on the establishment of germinating seedlings. Plants treated with any of the tested plant growth regulators alleviated cadmium toxicity symptoms, which were reflected by more fresh weight, less malondialdehyde concentration in leaves and lower antioxidant enzyme activities. The application of abscisic acid to the plants cultivated in the medium containing 100 μM Cd2+ resulted in significantly lower plant internal cadmium accumulation. Huabing Meng and Shujin Hua contributed equally to this paper.  相似文献   

6.
Cysteine, γ-glutamylcysteine, and glutathione and the extractable activity of the enzymes of glutathione biosynthesis, γ-glutamylcysteine synthetase (EC 6.3.2.2) and glutathione synthetase (EC 6.3.2.3), were measured in roots and leaves of maize seedlings (Zea mays L. cv LG 9) exposed to CdCl2 concentrations up to 200 micromolar. At 50 micromolar Cd2+, γ-glutamylcysteine contents increased continuously during 4 days up to 21-fold and eightfold of the control in roots and leaves, respectively. Even at 0.5 micromolar Cd2+, the concentration of γ-glutamylcysteine in the roots was significantly higher than in the control. At 5 micromolar and higher Cd2+ concentrations, a significant increase in γ-glutamylcysteine synthetase activity was measured in the roots, whereas in the leaves this enzyme activity was enhanced only at 200 micromolar Cd2+. Labeling of isolated roots with [35S]sulfate showed that both sulfate assimilation and glutathione synthesis were increased by Cd. The accumulation of γ-glutamylcysteine in the roots did not affect the root exudation rate of this compound. Our results indicate that maize roots are at least in part autonomous in providing the additional thiols required for phytochelatin synthesis induced by Cd.  相似文献   

7.
Cohen CK  Garvin DF  Kochian LV 《Planta》2004,218(5):784-792
Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe2+ ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn2+ and Cd2+ into pea (Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063–1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe2+ in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity 59Fe2+ uptake system (K m =54–93 nM). Additionally, radiotracer (65Zn, 109Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx (K m of 4 and 100 M, for Zn2+ and Cd2+, respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe2+ transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may promote heavy metal uptake via increased expression of this transporter could have implications both for human nutrition and also for phytoremediation, the use of terrestrial plants to sequester toxic metals from contaminated soil.  相似文献   

8.
9.
10.
A hydroponics culture experiment was conducted to investigate the effect of iron plaque on Cd uptake by and translocation within rice seedlings grown under controlled growth chamber conditions. Rice seedlings were pre-cultivated for 43 days and then transferred to nutrient solution containing six levels of Fe (0, 10, 30, 50, 80 and 100 mg L−1) for 6 days to induce different amounts of iron plaque on the root surfaces. Seedlings were then exposed to solution containing three levels of Cd (0, 0.1 and 1.0 mg L−1) for 4 days. In order to differentiate the uptake capability of Cd by roots with or without iron plaque, root tips (white root part without iron plaque) and middle root parts (with iron plaque) of pre-cultivated seedlings treated with 0, 30 and 50 mg L−1 Fe were exposed to 109Cd for 24 h. Reddish iron plaque gradually became visible on the surface of rice roots but the visual symptoms of the iron plaque on the roots differed among treatments. In general, the reddish color of the iron plaque became darker with increasing Fe supply, and the iron plaque was more homogeneously distributed all along the roots. The Fe concentrations increased significantly with increasing Fe supply regardless of Cd additions. The Cd concentrations in dithionite–citrate–bicarbonate (DCB)-extracts and in shoots and roots were significantly affected by Cd and Fe supply in the nutrient solution. The Cd concentrations increased significantly with increasing Cd supply in the solution and were undetectable when no Cd was added. The Cd concentrations in DCB-extracts with Fe supplied tended to be higher than that at Fe0 at Cd0.1, and at Cd1.0, DCB-Cd with Fe supplied was significantly lower. Cd concentrations in roots and shoots decreased with increasing Fe supply at both Cd additions. The proportion of Cd in DCB-extracts was significantly lower than in roots or shoots. Compared to the control seedlings without Fe supply, the radioactivity of 109Cd in shoots of seedlings treated with Fe decreased when root tips were exposed to 109Cd and did not change significantly when middle parts of roots were exposed. Our results suggest that root tissue rather than iron plaque on the root surface is a barrier to Cd uptake and translocation within rice plants, and the uptake and translocation of Cd appear to be related to Fe nutritional levels in the plants.  相似文献   

11.
Effects of Cd2+ on growth and Cd-binding complex formation in roots were examined with various seedlings of mono- and dicotyledonous plants. Maize, oat, barley and rice exhibited the greater tolerance to Cd2+ (100 μM) than did azuki bean, cucumber, lettuce, pea, radish, sesame and tomato (10–30 μM). Azuki bean was the most sensitive to Cd2+ (<10 μM). Under these Cd-treatments, cereal roots accumulated Cd2+ in the cytoplasmic fractions and transported Cd2+ into the same fractions of shoot tissues, to larger extents than did dicotyledonous roots. Cereal roots synthesized a Cd-binding complex containing phytochelatins in the cytoplasmic fractions, depending upon Cd2+ concentrations applied (30–100 μM). Such a complex was not detected from the same fractions of dicotyledonous roots treated with Cd2+. These results suggest that the Cd-binding complex formation has an important role in the tolerance of cereal roots against Cd2+.  相似文献   

12.
Summary Cadmium and zinc uptake parameters were determined for intact corn (Zea mays L.) seedlings grown for 15 and 22 in nutrient solutions containing levels of Cd and Zn that were similar to those found in soil solutions. Uptake of both elements was assumed to follow Michaelis-Menten kinetics. Calculations were based on the concentrations of free ionic Cd (Cd2+) and Zn (Zn2+) rather than the total solution concentration. Rates of Zn uptake were measured by determining depletion of Zn for periods of up to 30 h from solutions containing initial concentrations of 1.5 and 10μmol Zn 1−1. Depletion curves suggested that Zn uptake characteristics were similar at both levels of Zn in solution. The Imax for Zn uptake decreased from 550 to 400 pmol m−2 root surface s−1 between 16 and 22 d of growth while Km decreased from 2.2 to 1.5 μmol Zn2+ 1−1. Cadmium uptake parameters were measured by controlling Cd2+ activities in nutrient solution betwen 6.3 to 164 nmol l−1 by continuous circulation of nutrient solution through a mixed-resin system. Imax for Cd uptake was 400 pmol m−2 root surface s−1 at 15 and 22 d of growth. The magnitude of Km increased from 30 to 100 nmol Cd2+ 1−1 during this time period. The Km value suggests that corn is efficient for Cd uptake. The results of these uptake studies are consistent with the observed uptake of Zn and Cd by corn seedlings in soils.  相似文献   

13.
Effect of Cd2+ toxicity and heat stress in sensitive rice cv. DR-92 and tolerant rice cv. Bh-1 grown in North East region of India were studied in sand cultures. Increasing levels of 0–500 μM Cd2+ alone and/or heat stress showed increased activities of superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase and glutathione reductase enzymes which were associated with induced oxidative stress and altered enzyme activities. The values for SOD and POD activities were always more in cv. DR-92 whereas CAT and GR activities were higher in cv. Bh-1 in roots and shoots under Cd2+ or heat stress alone in sensitive cv. DR-92. Upon imposition of a combination of Cd2+ + heat the activities of SOD and POD decreased significantly in root/shoot of both the sensitive and tolerant rice varieties. A nine fold increase in GR activity under combination of heat + 100 μM Cd2+ stress in shoots of cv. Bh-1 at day 15 was noted when compared to controls. The dual stress combination of Cd2+ + heat did not alter catalase activity in vivo in both the rice varieties. Results suggest a time-specific and varietal distribution of the antioxidant enzymes in rice plants subjected to Cd2+ and/or heat stress. Tolerant cv. Bh-1 has better survival to combined stressors like Cd2+ and heat than sensitive rice cv. DR-92 and heat stress when given in combination with Cd2+ toxicity seem to mitigate the effect of Cd2+ stress alone in rice. The study indicates individual Cd2+ toxicity and heat stress and a combination of the two stresses to have separate implications on antioxidative defense mechanism in rice plants. Among enzymes of the defense apparatus ascorbate peroxidase and glutathione reductase appear to serve as an important component for better survival of rice plants under combination of Cd2+ + heat stress.  相似文献   

14.
An ‘alternating solution’ culture method was used to study the effects of chloride ions and humic acid (HA) on the uptake of cadmium by barley plants. The plants were transferred periodically between a nutrient solution and a test solution containing one of four levels of HA (0, 190, 569 or 1710 μg cm−3) and one of five levels of Cd (0, 0.5, 1.0, 2.5 or 5.0 μg cm−3) in either a 0.006M NaNO3 or 0.006M NaCl medium. Harvest and analysis of shoots and roots was after nineteen days. The distribution of Cd in the test solutions between Cd2+, CdCl+ and HA-Cd was determined in a separate experiment by dialysis equilibrium. In the nitrate test solutions Cd uptake was clearly controlled by Cd2+ concentration and was therefore reduced by HA complex formation. In the absence of HA, chloride suppressed Cd uptake indicating that Cd2+ was the preferred species. However complex formation with Cl enhanced uptake when HA was present because of an increase in the concentration of inorganic Cd species relative to the nitrate system. The ratio root-Cd/shoot-Cd remained at about 10 across a wide range of shoot-Cd concentrations, from about 3 μg g−1 (sub-toxic) up to 85 μg g−1 (80% yield reduction). The ability of the barley plants to accumulate ‘non-toxic’ Cd in their roots was thus very limited. Humic acid also had no effect on Cd translocation within the plant and the root/shoot weight ratio did not vary with any treatment. At shoot-Cd concentrations in excess of 50 μg g−1, K, Ca, Cu and Zn uptake was reduced, probably the result of root damage rather than a specific ion antagonism. The highest concentration of HA also lowered Fe and Zn uptake and there was a toxic effect with increasing HA concentration at Cd=0. However the lowest HA level, comparable with concentrations found in mineral soil solutions, only reduced yield (in the absence of Cd) by <5% while lowering Cd uptake across the range of Cd concentrations by 66%–25%.  相似文献   

15.
In this study, the effects of cadmium chloride (CdCl2) on plant growth, histology of roots, photosynthetic pigments content, δ-aminolevulinic acid dehydratase (ALA-D; E.C. 4.2.1.24) and acid phosphatase activities (AP; E.C. 3.1.3.2), soluble phosphorus (Pi) measurement and mineral nutrients content in cucumber seedlings (Cucumis sativus L.) were investigated. Cucumber seedlings were grown in vitro in an agar-solidified substrate containing four CdCl2 treatments (0, 100, 400, and 1000 μM) for ten days. Cd was readily absorbed by seedlings and its content was greater in the roots than in the shoot. Cd reduced shoot and root length, and fresh and dry biomass of seedlings. Inhibition of root cell elongation in Cd-treated seedlings was observed by the increase of the mean radial size of cells belonging to three zones of the root tip. The highest level of Cd reduced in a similar manner chlorophyll a, chlorophyll b and total chlorophyll contents. Increasing concentrations of Cd resulted in a linear decrease in carotenoids levels of cotyledons. Interestingly, the ALA-D activity in cotyledons was inhibited only at the highest level of Cd. Root and shoot AP activities were, respectively, activated and inhibited at all CdCl2 concentrations. Root Pi concentration was increased in all Cd treatments and it was not altered in the shoot tissues. Moreover, in general, the nutrient contents were increased in the root and decreased in the shoot. Therefore, we suggest that Cd affects negatively growth, photosynthetic pigments, ALA-D and AP activities and partition of mineral nutrients in cucumber seedlings.  相似文献   

16.
In 10-d-old soybean seedlings, the growth of roots and shoots was significantly inhibited at 50 and 100 M and more Cd2+, respectively, and by 50 M or more Ni2+. Although total protein content of roots exposed to 200 M Cd2+ or Ni2+ was similarly decreased compared to the control, the activity of nitrate reductase was much more inhibited by Cd2+. Ni2+-treatment (200 M) induced an accumulation of all free amino acids in roots associated with a decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities reflecting the accumulation of both alanine and aspartic acid, respectively. Cd2+-treatment (200 M) decreased the amount of all free amino acids. In addition, cysteine which is the main amino acid consisting the phytochelatin complexes constituted about 17.5 % of total free amino acids. The activities of both ALT and AST in Cd2+-treated roots were higher than in Ni2+-treated roots suggesting higher conversion of alanine and aspartate to pyruvate and oxaloacetate. Primary leaves excised from either Cd2+ or Ni2+-treated seedlings showed similar pattern of enzyme activities as roots.  相似文献   

17.
Plant accumulation of Fe and other metals can be enhanced under Fe deficiency. We investigated the influence of Fe status on heavy-metal and divalent-cation uptake in roots of pea (Pisum sativum L. cv Sparkle) seedlings using Cd2+ uptake as a model system. Radiotracer techniques were used to quantify unidirectional 109Cd influx into roots of Fe-deficient and Fe-sufficient pea seedlings. The concentration-dependent kinetics for 109Cd influx were graphically complex and nonsaturating but could be resolved into a linear component and a saturable component exhibiting Michaelis-Menten kinetics. We demonstrated that the linear component was apoplastically bound Cd2+ remaining in the root cell wall after desorption, whereas the saturable component was transporter-mediated Cd2+ influx across the root-cell plasma membrane. The Cd2+ transport system in roots of both Fe-deficient and Fe-sufficient seedlings exhibited similar Michaelis constant values, 1.5 and 0.6 μm, respectively, for saturable Cd2+ influx, whereas the maximum initial velocity for Cd2+ uptake in Fe-deficient seedlings was nearly 7-fold higher than that in Fe-grown seedlings. Investigations into the mechanistic basis for this response demonstrated that Fe-deficiency-induced stimulation of the plasma membrane H+-ATPase did not play a role in the enhanced Cd2+ uptake. Expression studies with the Fe2+ transporter cloned from Arabidopsis, IRT1, indicated that Fe deficiency induced the expression of this transporter, which might facilitate the transport of heavy-metal divalent cations such as Cd2+ and Zn2+, in addition to Fe2+.  相似文献   

18.
Plants suffer from combined stress of sulfur deficiency and cadmium toxicity in some agricultural lands. However, little is known about the reaction in plants, such as responses in antioxidant enzymes and non-protein thiol compounds, to such combined stress. Therefore, in this study, four treatments, S-sufficiency (TS?Cd), S-deficiency (T?S?Cd), Cd stress (TS+Cd) and combined stress of S-deficiency and Cd stress (T?S+Cd), were set up to investigate (1) the effects of sulfur deficiency or sulfur sufficiency on Cd toxicity to kidney bean cultivar seedlings and the related mechanisms, and (2) the responses of two kidney bean cultivars to combined stress of S-deficiency and Cd-tolerance. The results showed significant increases in hydrogen peroxide (H2O2) and malondialdehyde contents and significant increases in antioxidant enzyme (superoxide dismutase, catalase, peroxidase, and glutathione S-transferase) activities and non-protein thiol compounds (non-protein thiols, reduced glutathione, phytochelatins) synthesis in the plants in TS+Cd and T?S+Cd. On the tissue level, higher proportion of Cd was found to be immobilized/deposited in roots, while on the sub-cell level, higher proportion of Cd was located in cell walls and vacuole fractions with lower in cell organelles. Taken together, the results indicated that Cd detoxification was achieved by the two kidney bean cultivars through antioxidant enzyme activation, non-protein thiol compound synthesis and sub-cellular compartmentalization. In addition, the results indicated that sufficient S supply helped to relieve Cd toxicity, which is of special significance for remediation or utilization of Cd-contaminated soils as S is a plant essential nutrient.  相似文献   

19.
付传明  冼康华  苏江  何金祥  黄宁珍 《广西植物》2019,39(12):1628-1635
该文以广西野生金线莲无菌播种离体茎段为材料,采用单因素对比试验,研究了植物激素(NAA、IBA、6-BA、GA_3、KT、ZT、TDZ、2-IP)以及接种方式(竖直接种和水平接种)对壮苗生根培养的影响。结果表明:与对照相比,生长素有利于壮苗生根,NAA的效果优于IBA;细胞分裂素对壮苗生根的效果依次为6-BATDZKT=ZT 2-IPCK,其中6-BA诱导平均株高8.4 cm,3.6条根,茎粗为2.84 mm,植株生长健壮,诱导效果最好;赤霉素GA_3诱导出的植株高且直,但植株细弱,且抑制根系生长,不利于壮苗生根培养;在激素组合6-BA 0.5 mg·L~(-1)、NAA1.0 mg·L~(-1)处理中,组培苗生长健壮且根数量较多,效果最佳;水平接种能诱导出更多的根系,且便于接种操作,可以节省接种时间。因此,确定广西金线莲最适宜的壮苗生根培养基配方为1/2MS+6-BA 0.5 mg·L~(-1)+NAA 1.0 mg·L~(-1)+香蕉汁100 g·L~(-1)+AC(活性炭) 1.0 g·L~(-1)+蔗糖20 g·L~(-1),最佳接种方式为水平接种。  相似文献   

20.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号