首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light effects in mycorrhizal soybeans   总被引:5,自引:1,他引:4       下载免费PDF全文
Soybean (Glycine max. L. Merr.) plants were grown in an experiment with a 3 × 3 factorial design using different levels of light (170, 350, and 700 μE·m−2·s−1) and P as factors. Plants were grown in a greenhouse in pot cultures using a soil low in plant-available P under three P regimes: no additional P, P added as KH2PO4, or P uptake enhanced by colonization of the host plant with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe. Development of the VAM fungal endophyte and of plants under all three P regimes was depressed by limiting light. However, the growth response of VAM plants to increasing light relative to non-VAM plants in the absence of additional P increased while the response relative to non-VAM plants with additional P decreased slightly. The highly significant interaction between the factors (P < 0.001) of the experiment was due to differences in the magnitude and direction of simple effects of the factors. The implications of these differences in terms of source-sink relationships of the symbionts and the value of different non-VAM controls in interpreting VAM effects are discussed.  相似文献   

2.
Soybean (Glycine max [L.] Merr.) plants were nodulated (Bradyrhizobium japonicum) and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or left uncolonized. All plants were grown unstressed for 21 days initially. After this period, some VAM and non-VAM plants were exposed to four 8-day drought cycles while others were kept well watered. Drought cycles were terminated by rewatering when soil moisture potentials reached −1.2 megapascal. Nodule development and activity, transpiration, leaf conductance, leaf and root parameters including fresh and dry weight, and N and P nutrition of VAM plants and of non-VAM, P-fed plants grown under the same controlled conditions were compared. All parameters, except N content, were greater in VAM plants than in P-fed, non-VAM plants when under stress. The opposite was generally true in the unstressed comparisons. Transpiration and leaf conductance were significantly greater in stressed VAM than in non-VAM plants during the first half of the final stress cycle. Values for both VAM and non-VAM plants decreased linearly with time during the cycle and converged at a high level of stress (−1.2 megapascal). Effects of VAM fungi on the consequences of drought stress relative to P nutrition and leaf gas exchange are discussed in the light of these findings and those reported in the literature.  相似文献   

3.
Bean (Phaseolus vulgaris L. cv. Dwarf) roots were inoculated with Rhizobium phaseoli and colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum Gerd. and Trappe or left uncolonized as controls. The symbiotic associations were grown in an inert substrate using 0, 25, 50, 100, or 200 milligrams hydroxyapatite (HAP) (Ca10[PO4]6[OH]2) per pot as a P amendment. Plant and nodule dry weights and nodule activity increased for both VAM and control plants with increasing P availability, but values for VAM plants were significantly lower in all parameters than for controls. Inhibition of growth and of N2 fixation in VAM plants was greatest at the lowest and highest P regimes. It was smallest at 50 milligrams HAP, where available P at harvest (7 weeks after planting) was 5 micrograms P per gram substrate. At this level of P availability, the association apparently benefited from increased P uptake by the fungal endophyte. Percent P values for shoots, roots, and nodules did not differ significantly (p > 0.05) between VAM and control plants. The extent of colonization, fungal biomass, and the fungus/association dry weight ratio increased several fold as HAP was increased from 0 to 200 milligrams. It is concluded that intersymbiont competition for P and photosynthate was the primary cause for the inhibition of growth, nodulation, and nodule activity in VAM plants. Impaired N2 fixation resulted in N stress which contributed to inhibition of host plant growth at all levels of P availability.  相似文献   

4.
Soybean (Glycine max [L.] Merr.) plants grown in pot cultures were inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe and Rhizobium japonicum strain 61A118 at planting (G1R1) or at 20 days (G20R20), or with one of the endophytes after the other has colonized the host root (G1R20, G20R1). Nodulated (PR1) and VAM (G1N) dipartite associations, or nonsymbiotic plants (PN) using nutrient solutions with N, P, or N + P concentrations providing endophyte-equivalent nutrient inputs were used as controls. The delayed tripartite associations received the appropriate N, P, or N + P amendment while one or both endophytes were absent during the first 20 days of growth. Prior inoculation with one endophyte significantly inhibited development of the other. Root hexose sugar concentrations were negatively correlated with VAM colonization (r = −0.89), nodule activity (r = −0.91), and root P content (r = −0.93). Nodule (r = 0.97) and root (r = 0.96) P content correlated positively with VAM colonization. Nodule weight or VAM-fungal biomass were significantly greater in associations grown with only one endophyte. Dry weights of the PN, G1N, PR1, and G20R20 plants were significantly greater than those of tripartite plants inoculated at planting with either or both endophytes. Interendophyte inhibition is attributed to competition for root carbohydrates, and this effect apparently also affects overall plant productivity. The objective of the study was to determine if the timing of endophyte introduction and establishment affected the development of the other symbiotic partners.  相似文献   

5.
Four consecutive trifoliate leaves of 56-day-old symbiotic or nonsymbiotic soybean plants were evaluated individually for CO2 exchange rates (CER), leaf area and dry weight, and leaf N, P, and starch concentrations. Plants had been inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae and Rhizobium japonicum, with either of the endophytes alone, or with neither at time of planting. Plants lacking one or both endophytes received N and/or P fertilizers to produce plants of equal total leaf dry weight in all four treatments. Photosynthetic P-use efficiency (CER per unit leaf P) was higher in the leaves of VAM plants than in P-fertilized plants regardless of the N source (N2 fixation or combined N). Photosynthetic N-use efficiency was also higher in VAM than in non-VAM plants, but it was affected by the N source, with higher CER in the nodulated plants. The greatest differences in CER, starch accumulation and leaf area were found between the nonsymbiotic plants and those with both endophytes. Statistical evaluations of leaf parameters for treatment or nutrient concentration (N and P) effects between the tri-partite and the nonsymbiotic treatments showed significant changes in concentration of P, but not N, with decreasing leaf age. Both endophytes apparently enhance CO2 fixation at N and/or P concentrations lower than those of the nonsymbiotic plants. The effects of the endophytes on CO2 fixation were additive.  相似文献   

6.
The purpose of this study was to test the hypothesis that vesicular arbuscular mycorrhizal (VAM) fungi affect net assimilation of CO2 (A) of different-aged citrus leaves independent of mineral nutrition effects of mycorrhizae. Citrus aurantium L., sour orange plants were grown for 6 months in a sandy soil low in phosphorus that was either infested with the VAM fungus, Glomus intraradices Schenck & Smith, or fertilized with additional phosphorus and left nonmycorrhizal (NM). Net CO2 assimilation, stomatal conductance, water use efficiency, and mineral nutrient status for expanding, recently expanded, and mature leaves were evaluated as well as plant size and relative growth rate of leaves. Nutrient status and net gas exchange varied with leaf age. G. intraradices-inoculated plants had well-established colonization (79% of root length) and were comparable in relative growth rate and size at final harvest with NM plants. Leaf mineral concentrations were generally the same for VAM and NM plants except for nitrogen. Although leaf nitrogen was apparently sufficient for high rates of A, VAM plants did have higher nitrogen concentrations than NM at the time of gas exchange measurements. G. intraradices had no effect on A, stomatal conductance, or water use efficiency, irrespective of leaf age. These results show that well-established VAM colonization does not affect net gas exchange of citrus plants that are comparable in size, growth rate, and nutritional status with NM plants.  相似文献   

7.
Abstract Soybean (Glycine max (L.) Men) plants were grown under controlled conditions in an experiment designed as a 4 × 4 factorial. The factors were N or P nutrition, with different strains of Rhizobium japonicum or N-fertilization as levels of the first factor and different species of vesicular-arbuscular mycorrhizal (VAM) fungi or P fertilization as levels of the other. Organisms used were R. japonicum strains USDA 110, USDA 136, and 61A118, and the VAM fungi Glomus versiforme (Karst.) Berch, Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe, and Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. There were 16 treatments: nine Rhizobium + Glomus combinations, three Rhizobium + V and three Glomus+ N combinations, and one non-symbiotic set of plants supplied with N + P. The tripartite symbioses were evaluated by analysis of variance against the Rhizobium + P and Glomus + N comparison treatments for effects on root and leaf dry mass, root N and P content, nodule mass and activity, and VAM colinization. Significant to highly significant main effects and interactions were found in virtually all evaluations due to both Rhizobium strain and VAM–fungal species. We conclude that different endophyte isolates affect not only the host plant, but also the development and function of their co-endophytes. These findings establish the existence of inter-endophyte compatibility, an important consideration when selecting or engineering for desirable endophyte traits.  相似文献   

8.
Soybean (Glycine max [L.] Merr.) plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (VAM plants) or fertilized with KH2PO4 (nonVAM plants) and grown for 50 days under controlled conditions. Plants were harvested over a 4-day period during which the soil was permitted to dry slowly. The harvest was terminated when leaf gas exchange was no longer measurable due to drought stress. Significantly different effects in shoot water content, but not in shoot water potential, were found in VAM and nonVAM plants in response to drought stress. Leaf conductances of the two treatments showed similar response patterns to changes in soil water and shoot water potential but were significantly different in magnitude and trend relative to shoot water content. The relationships between transpiration, CO2 exchange and water-use efficiency (WUE) were the same in VAM and nonVAM plants in response to decreasing soil water and shoot water potential. As a function of shoot water content, however, WUE showed different response patterns in VAM and nonVAM plants.  相似文献   

9.
Summary Vesicular-arbuscular mycorrhizal fungi (VAM) are known to increase plant growth in saline soils. Previous studies, however, have not distinguished whether this growth response is due to enhanced P uptake or a direct mechanism of increased plant salt tolerance by VAM. In a glasshouse experiment onions (Allium cepa L.) were grown in sterilized, low-P sandy loam soil amended with 0, 0.8, 1.6 mmol P kg–1 soil with and without mycorrhizal inoculum. Pots were irrigated with saline waters having conductivities of 1.0, 2.8, 4.3, and 5.9 dS m–1. Onion colonized withGlomus deserticola (Trappe, Bloss, and Menge) increased growth from 394% to 100% over non-inoculated control plants when soil P was low ( 0.2 mmol kg–1 NaHCO3-extractable P) at soil saturation extract salinities from 1.1 dS m–1 to 8.8 dS m–1. When 0.8 and 1.6 mM P was added no dry weight differences due to VAM were observed, however, K and P concentrations were higher in VAM plants in saline treatments.Glomus fasciculatum (Gerdeman and Trappe) andGlomus mosseae (Nicol. and Gerd.) isolates increased growth of VAM tomato 44% to 193% in non-sterilized, saline soil (10 dS m–1 saturation extract) despite having little effect on growth in less saline conditions when soil P was low. Higher tomato water potentials, along with improved K nutrition by VAM in onion, indicate mechanisms other than increased P nutrition may be important for VAM plants growing under saline stress. These effects appear to be secondary to the effects of VAM on P uptake.  相似文献   

10.
The objective of the work was to determine differences in plant response to geographic isolates of a vesicular-arbuscular mycorrhizal (VAM) fungus, and to demonstrate the need for such determinations in the selection of desirable host-endophyte combinations for practical applications. Soybean ( Glycine max (L.) Merr.) plants were inoculated with Bradyrhizobium japonicum and isolates of the VAM-fungal morphospecies Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe, collected from an arid (AR), semiarid (SA) or mesic (ME) area. Inoculum potentials of the VAM-fungal isolates were determined and the inocula equalized, achieving the same level of root colonization (41%, P >0.05) at harvest (50 days). Plants of the three VAM treatments (AR, SA and ME) were evaluated against von VAM controls. Significant differences in plant response to colonization were found in dry mass, leaf K, N and P concentrations, and in root/shoot, nodule/root, root length/leaf area and root length/root mass ratios. The differences were most pronounced and consistent between the AR and all other treatments. Photosynthesis and nodule activity were higher ( P <0.05) in all VAM treatments, but only the AR plants had higher ( P <0.05) photosynthetic water-use efficiency than the controls. Nodule activity, evaluated by H2 evolution and C2H2 reduction, differed significantly between treatments. The results are discussed in terms of nutritional and non-nutritional effects of VAM colonization on the development and physiology of the tripartite soybean association in the light of intraspecific variability within the fungal endophyte.  相似文献   

11.
The objective of the study was to determine whether nutrient fluxes mediated by hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi between the root zones of grass and legume plants differ with the legume's mode of N nutrition. The plants, nodulating or nonnodulating isolines of soybean [ Glycine max (L.) Merr.], were grown in association with a dwarf maize ( Zea mays L.) cultivar in containers which interposed a 6-cm-wide root-free soil bridge between legume and grass container compartments. The bridge was delimited by screens (44 μm) which permitted the passage of hyphae, but not of roots and minimized non VAM interactions between the plants. All plants were colonized by the VAM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. The effects of N input to N-sufficient soybean plants through N2-fixation or N-fertilization on associated maize-plant growth and nutrition were compared to those of an N-deficient (nonnodulating, unfertilized) soybean control. Maize, when associated with the N-fertilized soybean, increased 19% in biomass, 67% in N content and 77% in leaf N concentration relative to the maize plants of the N-deficient association. When maize was grown with nodulated soybean, maize N content increased by 22%, biomass did not change, but P content declined by 16%. Spore production by the VAM fungus was greatest in the soils of both plants of the N-fertilized treatment. The patterns of N and P distribution, as well as those of the other essential elements, indicated that association with the N-fertilized soybean plants was more advantageous to maize than was association with the N2-fixing ones.  相似文献   

12.
Soybean [ Glycine max (L.) Merr. cv. Kent] plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe in pot cultures using an inert medium and a nutrient solution. Phosphorus was provided initially as 0, 25,50, 100 or 200 mg hydroxyapatite [HAP, Ca10(PO4)6(OH)2] per pot. Under the low (0 mg HAP) and high (100 and 200 mg HAP) P regimes, VAM plants showed 20, 25 and 38% growth retardation, respectively, relative to non-colonized controls. At 50 mg HAP, VAM plant growth was significantly enhanced (14%). Dry weight and P content of both VAM and control plants increased with increased P availability throughout the HAP gradient. Intraradical VAM fungal biomass increased linearly with increasing P availability. Extraradical VAM fungal biomass was smaller than the intraradical component of the fungus at the lowest and highest levels of P addition in the growth medium. The ratio of extra- to intraradical mycelium, a suggested index of VAM fungal effectiveness, was greatest for the 50 mg HAP treatment, coinciding with growth enhancement of the host plant. This enhanced growth of the host at an intermediate P level was apparently a result of increased P uptake by the endophyte.  相似文献   

13.
Growth, development, and mineral physiology of potato (Solanum tuberosum L.) plants in response to infection by three species of vesicular-arbuscular mycorrhizal (VAM) fungi and different levels of P nutrition were characterized. P deficiency in no-P and low-P (0.5 mM) nonmycorrhizal plants developed between 28 and 84 d after planting. By 84 d after planting, P deficiency decreased plant relative growth rate such that no-P and low-P plants had, respectively, 65 and 45% less dry mass and 76 and 55% less total P than plants grown with high P (2.5 mM). A severe reduction in leaf area was also evident, because P deficiency induced a restriction of lateral bud growth and leaf expansion and, also, decreased the relative plant allocation of dry matter to leaf growth. Root growth was less influenced by P deficiency than either leaf or stem growth. Moreover, P-deficient plants accumulated a higher proportion of total available P than high-P plants, indicating that P stress had enhanced root efficiency of P acquisition. Plant P deficiency did not alter the shoot concentration of N, K, Mg, or Fe; however, the total accumulation of these mineral nutrients in shoots of P-stressed plants was substantially less than that of high-P plants. P uptake by roots was enhanced by each of the VAM symbionts by 56 d after planting and at all levels of abiotic P supply. Species differed in their ability to colonize roots and similarly to produce a plant growth response. In this regard, Glomus intraradices (Schenck and Smith) enhanced plant growth the most, whereas Glomus dimorphicum (Boyetchko and Tewari) was least effective, and Glomus mosseae ([Nicol. and Gerd.] Gerd. and Trappe) produced an intermediate growth response. The partial alleviation of P deficiency in no-P and low-P plants by VAM fungi stimulated uptake of N, K, Mg, Fe, and Zn. VAM fungi enhanced shoot concentrations of P, N, and Mg by 28 d after planting and, through a general improvement of overall plant mineral nutrition, promoted plant growth and development.  相似文献   

14.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   

15.
Effects of vesicular-arbuscular mycorrhizal (VAM) infection and P on root respiration and dry matter allocation were studied in Plantago major L. ssp. pleiosperma (Pilger). By applying P, the relative growth rate of non-VAM controls and plants colonized by Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe was increased to a similar extent (55-67%). However, leaf area ratio was increased more and net assimilation rate per unit leaf area was increased less by VAM infection than by P addition. The lower net assimilation rate could be related to a 20 to 30% higher root respiration rate per unit leaf area of VAM plants. Root respiration per unit dry matter and specific net uptake rates of N and P were increased more by VAM infection than by P addition. Neither the contribution of the alternative respiratory path nor the relative growth rate could account for the differences in root respiration rate between VAM and non-VAM plants. It was estimated that increased fungal respiration (87%) and ion uptake rate (13%) contributed to the higher respiratory activity of VAM roots of P. major.  相似文献   

16.
Physicochemical and biological water quality, including the microcystin concentration, was investigated from spring to autumn 1999 in the Daechung Reservoir, Korea. The dominant genus in the cyanobacterial blooming season was Microcystis. The microcystin concentration in particulate form increased dramatically from August up to a level of 200 ng liter−1 in early October and thereafter tended to decrease. The microcystin concentration in dissolved form was about 28% of that of the particulate form. The microcystins detected using a protein phosphatase (PP) inhibition assay were highly correlated with those microcystins detected by a high-performance liquid chromatograph (r = 0.973; P < 0.01). Therefore, the effectiveness of a PP inhibition assay for microcystin detection in a high number of water samples was confirmed as easy, quick, and convenient. The microcystin concentration was highly correlated with the phytoplankton number (r = 0.650; P < 0.01) and chlorophyll-a concentration (r = 0.591; P < 0.01). When the microcystin concentration exceeded about 100 ng liter−1, the ratio of particulate to dissolved total nitrogen (TN) or total phosphorus (TP) converged at a value of 0.6. Furthermore, the microcystin concentration was lower than 50 ng liter−1 at a particulate N/P ratio below 8, whereas the microcystin concentration varied quite substantially from 50 to 240 ng liter−1 at a particulate N/P ratio of >8. Therefore, it seems that the microcystin concentration in water can be estimated and indirectly monitored by analyzing the following: the phytoplankton number and chlorophyll-a concentration, the ratio of the particulate and the dissolved forms of N and P, and the particulate N/P ratio when the dominant genus is toxigenic Microcystis.  相似文献   

17.
Relationships between net plant CO2 exchange rate (CER) and canopy development were examined in `jubilee' tomato over the initial 4 weeks of vegetative growth. A comparison was made between two plant groups that were alternatively exposed to 200 or 800 microeinsteins per square meter per second midday irradiation to establish a differential in net CER. Plants exposed to higher irradiation demonstrated a 2- to 4-fold greater net photosynthetic rate per leaf area and 100% average higher net CO2 assimilation rate/plant· day. However, leaf-stem growth differed by <50% suggesting a poor relationship to CER. Leaf area growth rate (LAGR) of individual leaves appeared closely related to CER during initial leaf expansion but a greater function of order of emergence in successive leaf growth. LAGR on a per plant basis increased linearly with leaf dry weight but appeared more limited by factors determining maximum leaf enlargement and rate of new leaf development. Net CO2 assimilation/leaf area and leaf starch consistently declined with time while net CO2 assimilation plant/day approached a constant rate following 2 to 3 weeks growth. Composite results suggested a simple relationship for sucessive growth where accumulated leaf carbohydrate in excess of 200 milligrams/plant·day could be expected to be partitioned to other plant segments.  相似文献   

18.
In conjunction with a study of the effects of ear removal on the senescence of whole maize (Zea mays L.) plants, visual symptoms and associated changes in constituent contents and activities of a selected leaf (first leaf above the ear) were determined. Leaves were sampled from field-grown eared and earless Pioneer brand 3382, B73 × Mo17, and Farm Services brand 854 maize hybrids at nine times during the grainfilling period.

Visual symptoms indicated the following sequence and rate of senescence: earless B73 × Mo17 > earless P3382 » eared B73 × Mo17 » eared P3382 ≤ earless FS854 > eared FS854. All earless hybrids showed increases in leaf dry weight and sugar content; however, the increases were transitory for P3382 and B73 × Mo17, but continuous throughout the grain-filling period for FS854, indicative of continued photosynthetic activity of the latter. All earless hybrids exhibited similar and transitory starch accumulation patterns. Thus, FS854 was an exception to the concept that carbohydrate accumulation accelerates leaf senescence. Ear removal resulted in accelerated losses of reduced N, phosphoenolpyruvate and ribulose bisphosphate carboxylases, phosphorus, chlorophyll, nitrate reductase activity, and moisture for P3382 and B73 × Mo17 plants. In contrast, the loss of all components (except phosphorus) was similar for the selected leaf of earless and eared FS854.

Although the loss of nitrate reductase activity, reduced N, and carboxylating enzymes accurately reflected the development of senescence of the selected leaf, the rate of net loss of reduced N and carboxylating enzymes appeared to be regulated. We deduced that the rate of flux of N into the leaf was a factor in regulating the differing rates of senescence observed for the six treatments; however, we cannot rule out the possibility of concurrent influence of growth regulators or other metabolites.

  相似文献   

19.
Soybean [ Glycine max (L.) Merr. cv. Wells] plants grown in a greenhouse were inoculated with Rhizobium japonicum strain 61A118 and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. & Trappe. Plants were defoliated (26, 48 and 66%) throughout the growth period and evaluated for VAM colonization, N2, fixation and photosynthesis at harvest (six weeks). Photosynthate stress as a result of defoliation affected nodulation and nodule activity most severely. Colonization of the roots by the VAM fungus was little affected in comparison, and the intensity of colonization increased with increasing stress. The CO2-exchange rate decreased less with defoliation than did leaf mass, and photosynthetic efficiency increased with the severity of defoliation. The increase in photosynthetic efficiency was significantly correlated with increases in leaf P (r = 0.91) and N (r = 0.97) concentrations. The results suggest that the VAM fungus should not be regarded as a simple P source and C sink in the tripartite legume association. Threeway source/sink relationships (VAM-P, Rhizobium-N, and host leaf-C) are discussed.  相似文献   

20.
In the present study, leaves of different plant species were girdled by the hot wax collar method to prevent export of assimilates. Photosynthetic activity of girdled and control leaves was evaluated 3 to 7 days later by two methods: (a) carbon exchange rate (CER) of attached leaves was determined under ambient CO2 concentrations using a closed gas system, and (b) maximum photosynthetic capacity (Amax) was determined under 3% CO2 with a leaf disc O2 electrode. Starch, hexoses, and sucrose were determined enzymically. Typical starch storers like soybean (Glycine max L.) (up to 87.5 milligrams of starch per square decimeter in girdled leaves), cotton (Gossypium hirsutum L.), and cucumber (Cucumis sativus L.) responded to 7 days of girdling by increased (80-100%) stomatal resistance (rs) and decreased Amax (>50%). On the other hand, spinach (Spinacia oleracea L.), a typical sucrose storer (up to 160 milligrams of sucrose per square decimeter in girdled leaves), showed only a slight reduction in CER and almost no change in Amax. Intermediate plants like tomato (Lycopersicon esculentum Mill.), sunflower (Helianthus annuus L.), broad bean (Vicia faba L.), bean (Phaseolus vulgaris L.), and pea (Pisum sativum L.), which upon girdling store both starch and sucrose, responded to the girdle by a considerable reduction in CER but only moderate inhibition of Amax, indicating that the observed reduction in CER was primarily a stomatal response. Both the wild-type tobacco (Nicotiana sylvestris) (which upon girdling stored starch and hexoses) and the starchless mutant (which stored only hexoses, up to 90 milligrams per square decimeter) showed 90 to 100% inhibition of CER and approximately 50% inhibition of Amax. In general, excised leaves (6 days) behaved like girdled leaves of the respective species, showing 50% reduction of Amax in wild-type and starchless N. sylvestris but only slight decline of Amax in spinach. The results of the present study demonstrate the possibility of the occurrence of end-product inhibition of photosynthesis in a large number of crop plants. The long-term inhibition of photosynthesis in girdled leaves is not confined to stomatal responses since the Amax declined up to 50%. The inhibition of Amax by girdling was strongest in starch storers, but starch itself cannot be directly responsible, because the starchless mutant of N. sylvestris was also strongly inhibited. Similarly, the inhibition cannot be attributed to hexose sugars either, because soybean, cotton, and cucumber are among the plants most strongly inhibited although they do not maintain a large hexose pool. Spinach, a sucrose storer, showed the least inhibition in both girdled and excised leaf systems, which indicates that sucrose is probably not directly responsible for the end-product inhibition of photosynthesis. The occurrence of strong end-product inhibition appears to be correlated with high acid-invertase activity in fully expanded leaves. The inhibition may be related to the nature of soluble sugar metabolism in the extrachloroplastic compartment and may be caused by a metabolite that has different rates of accumulation and turnover in sucrose storers and other plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号