首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An S-thiolated 30-kDa protein has been purified from rat liver by two steps of ion-exchange chromatography. This monomeric protein has two "reactive" sulfhydryls that can be S-thiolated by glutathione (form a mixed disulfide with glutathione) in intact liver. The protein has been identified as carbonic anhydrase III by sequence analysis of tryptic peptides from the pure protein. The two "reactive" sulfhydryls on this protein can produce three different S-thiolated forms of the protein that can be separated by isoelectric focusing. Using this technique it was possible to study the S-thiolation and dethiolation reactions of the pure protein. The reduced form of this protein was S-thiolated both by thiol-disulfide exchange with glutathione disulfide and by oxyradical-initiated S-thiolation with reduced glutathione. The S-thiolation rate of this 30-kDa protein was somewhat slower than that of glycogen phosphorylase b by both S-thiolation mechanisms. The S-thiolated form of this protein was poorly dethiolated (i.e., reduced) by glutathione, cysteine, cysteamine, or coenzyme A alone. Enzymatic catalysis by two different enzymes (glutaredoxin and thioredoxin-like) greatly enhanced the dethiolation rate. These experiments suggest that carbonic anhydrase III is a major participant in the liver response to oxidative stress, and that the protein may be S-thiolated by two different non-enzymatic mechanisms and dethiolated by enzymatic reactions in intact cells. Thus, the S-thiolation/dethiolation of carbonic anhydrase III resembles glycogen phosphorylase and not creatine kinase.  相似文献   

2.
Two methods for quantitation of protein S-thiolation, by isoelectric focusing or by enzyme activity, were used for studying S-thiolation of cytoplasmic cardiac creatine kinase. With these methods, creatine kinase was identified as a major S-thiolated protein in both bovine and rat heart. In rat heart cell cultures, creatine kinase became 10% S-thiolated during a 10 min incubation with 0.2 mM diamide. This enzyme became S-thiolated more slowly than other heart cell proteins and it also dethiolated more slowly. Two sequential additions of diamide at a 25 min interval caused twice as much S-thiolation after the second addition as compared to the first. This increased sensitivity to the second diamide treatment may have resulted from glutathione loss during the first addition which produced a higher GSSG-to-GSH ratio after the second treatment. The GSSG-to-GSH ratio was highest prior to the maximum S-thiolation of creatine kinase, but, in general, the time course of glutathione was similar to the S-thiolation of creatine kinase. This study demonstrates that cytoplasmic creatine kinase is S-thiolated and, therefore, inhibited during a diamide-induced oxidative stress in heart cells. Implications for regulation of cardiac metabolism during oxidative stress are discussed.  相似文献   

3.
The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, in which protein -SH groups form mixed disulfides with low-molecular-weight thiols such as glutathione. We report here the identification of glyceraldehyde-3-phosphate dehydrogenase as the major target of protein S-thiolation following treatment with hydrogen peroxide in the yeast Saccharomyces cerevisiae. Our studies reveal that this process is tightly regulated, since, surprisingly, despite a high degree of sequence homology (98% similarity and 96% identity), the Tdh3 but not the Tdh2 isoenzyme was S-thiolated. The glyceraldehyde-3-phosphate dehydrogenase enzyme activity of both the Tdh2 and Tdh3 isoenzymes was decreased following exposure to H2O2, but only Tdh3 activity was restored within a 2-h recovery period. This indicates that the inhibition of the S-thiolated Tdh3 polypeptide was readily reversible. Moreover, mutants lacking TDH3 were sensitive to a challenge with a lethal dose of H2O2, indicating that the S-thiolated Tdh3 polypeptide is required for survival during conditions of oxidative stress. In contrast, a requirement for the nonthiolated Tdh2 polypeptide was found during exposure to continuous low levels of oxidants, conditions where the Tdh3 polypeptide would be S-thiolated and hence inactivated. We propose a model in which both enzymes are required during conditions of oxidative stress but play complementary roles depending on their ability to undergo S-thiolation.  相似文献   

4.
Addition of chemical oxidants to cells in culture has been shown to induce binding of low-molecular-weight thiols to reactive sulfhydryls on proteins in a process termed S-thiolation. We found that stimulation of the respiratory burst in mouse macrophages, with release of O2-, resulted in S-thiolation of several proteins, most prominently three with molecular weights of 74, 33, and 22 kDa. One protein (28 kDa) was S-thiolated without addition of an exogenous stimulus. Exposure of cells to concentrations of hydrogen peroxide like those released in the respiratory burst induced S-thiolation of these same proteins. S-thiolation and release of O2- began at approximately the same time. Stimulation of LPS-elicited macrophages induced prominent S-thiolation of three different proteins (38, 30, and 21 kDa). Under the conditions of these experiments, there was no detectable increase in glutathione disulfide and a negligible decrease in glutathione, which suggests that S-thiolation can occur without significant perturbation of the glutathione peroxidase/reductase cycle. S-thiolation of proteins could help protect the macrophage against the autoxidative damage associated with the respiratory burst. Modification of specific proteins by S-thiolation might serve to modulate cellular metabolic events.  相似文献   

5.
The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein -SH groups form mixed disulfides with low molecular weight thiols such as glutathione. We report here that this protein modification is not a simple response to the cellular redox state, since different oxidants lead to different patterns of protein S-thiolation. SDS-polyacrylamide gel electrophoresis shows that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the major target for modification following treatment with hydroperoxides (hydrogen peroxide or tert-butylhydroperoxide), whereas this enzyme is unaffected following cellular exposure to the thiol oxidant diamide. Further evidence that protein S-thiolation is tightly regulated in response to oxidative stress is provided by the finding that the Tdh3 GAPDH isoenzyme, and not the Tdh2 isoenzyme, is S-thiolated following exposure to H(2)O(2) in vivo, whereas both GAPDH isoenzymes are S-thiolated when H(2)O(2) is added to cell-free extracts. This indicates that cellular factors are likely to be responsible for the difference in GAPDH S-thiolation observed in vivo rather than intrinsic structural differences between the GAPDH isoenzymes. To begin to search for factors that can regulate the S-thiolation process, we investigated the role of the glutaredoxin family of oxidoreductases. We provide the first evidence that protein dethiolation in vivo is regulated by a monothiol-glutaredoxin rather than the classical glutaredoxins, which contain two active site cysteine residues. In particular, glutaredoxin 5 is required for efficient dethiolation of the Tdh3 GAPDH isoenzyme.  相似文献   

6.
S-thiolation of cardiac creatine kinase and skeletal muscle glycogen phosphorylase b was initiated by reduced oxygen species in reaction mixtures containing reduced glutathione. Both proteins were extensively modified at similar rates under conditions in which the oxidation of glutathione was inadequate to cause S-thiolation by thiol-disulfide exchange. Creatine kinase was both S-thiolated and non-reducibly oxidized at the same time at low glutathione concentration. The amount of each modification was decreased by adding additional reduced glutathione, and with adequate glutathione oxidation was prevented while S-thiolation was still very active. S-thiolation of glycogen phosphorylase b was not significantly affected by glutathione concentration and non-reducible oxidation of glycogen phosphorylase b was not observed. These experiments suggest that oxyradical or H2O2-initiated processes may be an important mechanism of protein S-thiolation during oxidative stress, and that the cellular concentration of glutathione may be an important factor in S-thiolation of different proteins. Both creatine kinase and glycogen phosphorylase b competed favorably with ferricytochrome c for superoxide anion in the standard xanthine oxidase system for the generation of oxyradicals and H2O2. These proteins were as effective as ascorbate and much more effective than reduced glutathione in this regard. Ascorbate was also an effective inhibitor of oxyradical-initiated S-thiolation of creatine kinase, suggesting a role of superoxide anion in protein S-thiolation. Other experiments showed that both catalase and superoxide dismutase could partially inhibit protein S-thiolation. Thus, reduced oxygen species may react with protein sulfhydryls resulting in S-thiolation by a mechanism that involves the reaction of an activated protein thiol with reduced glutathione.  相似文献   

7.
Protein S-thiolation or protein-glutathione mixed disulfide (PSSG) occurs when cells are exposed to oxidative stress, and has been implicated in several cellular functions. The S-thiolation of hemoglobin as well as other abundant proteins is proposed to participate as a redox buffer, being part of the antioxidant protection system of the cell during the oxidative challenge. We studied the oxidative stress caused by peroxides (H(2)O(2), cumene and tert-butyl hydroperoxide) on chicken blood by measuring the thiol/disulfide status. Chicken blood under peroxide treatment showed a time- and concentration-dependent increase in glutathione disulfide (GSSG) and PSSG. GSSG peaked immediately after treatment (1 min), while PSSG increased progressively over time, showing a maximum after about 30 min. The system recovered after 140 min of incubation, with GSSG and PSSG then barely reaching control values. The S-thiolation of hemoglobin was monitored under nondenaturing PAGE, and the fraction of S-thiolated hemoglobin, or Hb A1, rose in a dose-dependent fashion and was proportional to total S-thiolation, measured as PSSG. This significant correlation indicates that hemoglobin is the major S-thiolated protein in chicken erythrocytes treated with peroxides. The present work shows the behavior of chicken blood under peroxide treatment; it anticipated that chicken hemoglobin thiol groups can actively participate in the redox processes of erythrocytes exposed to oxidative stress, and that hemoglobin is the major S-thiolated protein. This further corroborates the hypothesis that abundant proteins, such as hemoglobin, may take part in the cellular antioxidant defense system.  相似文献   

8.
Basic fibroblast growth factor has 4 cysteine residues in its amino acid sequence, two of which are perfectly conserved within the fibroblast growth factor family of proteins suggesting a disulfide bond at this position. Furthermore, thiol titration of bovine pituitary basic fibroblast growth factor (bFGF) indicates the presence of two free thiols, which is consistent with an intramolecular disulfide. Direct analysis of natural and recombinant fibroblast growth factor proteins have not confirmed the existence of such a disulfide. Instead, the two nonconserved cysteines of bFGF purified from bovine pituitaries are S-thiolated with glutathione. Inclusion of 75 mM N-ethylmaleimide during the homogenization of the pituitaries effectively blocks the S-thiolation, demonstrating that this modification is an artifact of the purification procedure. Analysis of the N-ethylmaleimide purified bovine pituitary bFGF suggests that the natural protein is in the correct redox state when all 4 cysteines are in the reduced form.  相似文献   

9.
Several biomarkers of oxidative stress have been proposed and used in clinical research but so far unreliable or, at least, controversial results have been obtained. Given the high susceptibility of sulfhydryl groups to oxidation, we here suggest the use of a protein thiolation index (PTI), i.e., the molar ratio between the sum of all low molecular mass thiols bound to plasma proteins (forming, as a whole, S-thiolated proteins) and protein free cysteinyl residues, as a suitable biomarker of oxidative stress. While titration of free thiols can be performed by a simple spectrophotometric procedure, accurate quantification of S-thiolated proteins is problematic and current methods require, in most cases, application of time-consuming chromatographic techniques, making their application to large-scale clinical studies difficult. Here we report a new spectrophotometric method which relies on the specific determination of low molecular mass thiols released from S-thiolated proteins after dithiothreitol reduction. These amino acids can be titrated by conjugation with ninhydrin which, reacting with primary and secondary amine groups, yields a deep blue-purple color, which can be spectrophotometrically revealed. PTI showed an age dependency with a near linear increase during aging in humans. In addition, PTI was significantly higher in patients suffering from alkaptonuria with respect to healthy controls, suggesting that increased prooxidant conditions occur in the blood of these subjects.  相似文献   

10.
HSP27 exists as large aggregates that breakdown after phosphorylation. We show rat cardiac HSP27 is S-thiolated during oxidant stress, and this modification, without phosphorylation, disaggregates multimeric HSP27. Biotinylated cysteine acts as a probe for thiolated proteins, which are detected using non-reducing Western blots probed with streptavidin-horseradish peroxidase. Controls show a low level of S-thiolation, which is increased 3.6-fold during post-ischemic reperfusion. S-thiolated proteins were purified using streptavidin-agarose, and Western immunoblotting showed HSP27 was present. We increased protein S-thiolation 10-fold with 10 microm H2O2 with or without a kinase inhibitor mixture (staurosporine, genistein, bisindolylmaleimide, SB203580, and PD98059). H2O2 alone induced the phosphorylation of HSP27 Ser-86 and Ser-45/Ser-59 of its homologue alphaB crystallin. However, kinase inhibition reduced phosphorylation of these sites below basal. Despite effective kinase inhibition, H2O2 still disaggregated HSP27, but not alphaB crystallin. This is consistent with the lack of an S-thiolation site on alphaB crystallin. Thus, we have demonstrated a novel mechanism of HSP27 multimeric size regulation. S-thiolation must occur at Cys-141, the only cysteine in rat HSP27.  相似文献   

11.
We have developed methods that allow detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. Cysteine was biotinylated and loaded into isolated rat hearts. During oxidative stress, biotin-cysteine forms a disulfide bond with reactive protein cysteines, and these can be detected by probing Western blots with streptavidin-horseradish peroxidase. S-Thiolated proteins were purified using streptavidin-agarose. Thus, we demonstrated that reperfusion and diamide treatment increased S-thiolation of a number of cardiac proteins by 3- and 10-fold, respectively. Dithiothreitol treatment of homogenates fully abolished the signals detected. Fractionation studies indicated that the modified proteins are located within the cytosol, membrane, and myofilament/cytoskeletal compartments of the cardiac cells. This shows that biotin-cysteine gains rapid and efficient intracellular access and acts as a probe for reactive protein cysteines in all cellular locations. Using Western blotting of affinity-purified proteins we identified actin, glyceraldehyde-3-phosphate dehydrogenase, HSP27, protein-tyrosine phosphatase 1B, protein kinase Calpha, and the small G-protein ras as substrates for S-thiolation during reperfusion of the ischemic rat heart. MALDI-TOF mass fingerprint analysis of tryptic peptides independently confirmed actin and glyceraldehyde-3-phosphate dehydrogenase S-thiolation during reperfusion. This approach has also shown that triosephosphate isomerase, aconitate hydratase, M-protein, nucleoside diphosphate kinase B, and myoglobin are S-thiolated during post-ischemic reperfusion.  相似文献   

12.
The role of oxidative stress in patients with end stage renal disease (ESRD), which occurs at significantly higher levels than in the general population, is often underestimated in clinical practice. Emerging evidence highlights the strong correlation of oxidative stress with chronic inflammation and cardiovascular disease, which are highly prevalent in most patients on maintenance haemodialysis (HD) and are a major risk factor for mortality in this population. In this study, total plasma thiols and plasma S-thiolated proteins were measured in patients with ESRD, before and after a regular HD session, and compared to age-matched healthy subjects. We found a significant decrease in the level of total plasma thiols and, conversely, a significant increase in the level of S-thiolated proteins in these patients. In most patients, post-HD plasma level of total thiols did not differ from the one in healthy subjects, whereas plasma level of S-thiolated proteins was lower in HD patients than in age-matched healthy controls. This suggests that a single HD session restores plasma thiol redox status and re-establishes the antioxidant capacity of plasma thiols. Additionally, we determined protein thiolation index (PTI), i.e., the molar ratio between the sum of all low molecular mass thiols bound to S-thiolated plasma proteins and protein free cysteinyl residues. Patients with ESRD had a significantly higher PTI compared to age-matched healthy subjects and HD was associated with a decrease in PTI to normal, or lower than normal, levels. Although this study is limited in size, our results suggest that PTI is a useful indicator of thiol-specific oxidative stress in patients with ESRD on maintenance HD. This study also emphasizes that PTI determination is a cheap and simple tool suitable for large-scale clinical studies that could be used for routine screening of thiol-specific oxidative stress.  相似文献   

13.
The present studies aimed to elucidate how the modulation of gamma-glutamyl transpeptidase (gammaGT) activity in human hepatoma (HepG2) cell line influences H(2)O(2) production, caspase 3 activity, protein S-thiolation by glutathione (GSH), cysteinyl-glycine (Cys-Gly) and cysteine (Cys), and the level of other redox forms of these thiols. The experiments showed that 1-h stimulation of gammaGT elevated H(2)O(2) production, leading to prooxidant conditions. After 24-h stimulation, H(2)O(2) concentration was at the control level, while Cys-Gly-, Cys- and GSH-dependent S-thiolation was markedly increased, which was accompanied by a drop in caspase-3 activity. The inhibition of gammaGT activity by acivicin led to H(2)O(2) decrease after 1-h incubation which still persisted after 24 h. The inhibition of gammaGT activity in HepG2 cells was also connected with the lowering of S-thiolation with Cys and Cys-Gly and with increasing of caspase-3 activity. The results of our studies indicate that the modulation of gammaGT activity can be used to change cellular redox status, and can affect Cys- and Cys-Gly-dependent S-thiolation and caspase-3 activity. We suggest that the role of high gammaGT activity in HepG2 cells can be connected with production of reactive oxygen species and with S-thiolation with Cys and Cys-Gly that can influence activity of caspase 3.  相似文献   

14.
15.
.16 +/- 0.062% of the fatty acid-binding protein purified from 50 mM N-ethylmaleimide-treated rat liver (L-FABP) was determined as a form S-thiolated by glutathione (L-FABP-SSG). L-FABP-SSG, which was prepared in vitro through thiol-disulfide exchange reaction, showed more acidic pI (approximately 5.0) than the pI (approximately 7.0) of reduced L-FABP. S-thiolation of L-FABP by glutathione decreased the affinity of the protein for unsaturated fatty acids without changing the equimolar maximum binding. The changes in Kd were from 0.63 +/- 0.054 microM to 1.03 +/- 0.14 microM for oleic acid, from 0.63 +/- 0.028 microM to 0.97 +/- 0.12 microM for linoleic acid and from 0.85 +/- 0.050 microM to 1.45 +/- 0.024 microM for arachidonic acid. This modification did not alter the affinity nor the maximum binding for saturated fatty acids, which were determined to be Kd of approximately 1.0 microM for palmitic acid and approximately 0.9 microM for stearic acids, and equimolar maximum binding for both fatty acids. The binding affinity of L-FABP for unsaturated fatty acid may be regulated by redox state of the liver.  相似文献   

16.
Macrophage cell cultures were treated with menadione, zymosan, or phorbol myristate acetate (PMA), and changes in productions of superoxide anion and hydroperoxide, and in glutathione oxidation and S-thiolation of cystatin-beta (formation of a mixed disulfide of cystatin-beta and glutathione) were examined. All three compounds promoted production of superoxide anion and hydroperoxide, but only menadione caused extensive oxidation of glutathione. Menadione caused S-thiolation of cystatin-beta in a dose-dependent fashion, but the other two compounds did not. Removal of menadione promptly reduced the oxidation of glutathione and S-thiolation of cystatin-beta induced by menadione. Inhibition of catalase by aminotriazol caused slight increase in the GSSG content in both menadione- and zymosan-treated cells, but not in S-thiolation of cystatin-beta in zymosan-treated cells. None of the three compounds influenced appreciably the activity of glutathione peroxidase, glutathione reductase, or superoxide dismutase in cultured cells. These results indicate that S-thiolation of cystatin-beta occurs in cells in response to oxidative challenge by menadione but not by zymosan or by the tumor promoter PMA. Dethiolation of cystatin-beta by purified thiol transferase and protein disulfide isomerase in the presence of different concentrations of GSH was examined in vitro. Both enzymes catalyzed dethiolation of cystatin-beta at a much lower level of GSH than that required for the non-enzymatic reaction, suggesting the importance of enzymatic catalysis of S-thiolation and dethiolation of cystatin-beta in cells.  相似文献   

17.
Elevated oxidative stress can alter the function of proteins through the reversible oxidation of the thiol groups of key cysteine residues. This study evaluated a method to scan for reversible protein thiol oxidation in tissue by measuring reduced and oxidized protein thiols. It assessed the responsiveness of protein thiols to oxidative stress in vivo using a dystrophic (mdx) mouse model and compared the changes to commonly used oxidative biomarkers. In mdx mice, protein thiol oxidation was significantly elevated in the diaphragm, gastrocnemius and quadriceps muscles. Neither malondialdehyde nor degree of glutathione oxidation was elevated in mdx muscles. Protein carbonyl content was elevated, but changes in protein carbonyl did not reflect changes in protein thiol oxidation. Collectively, these data indicate that where there is an interest in protein thiol oxidation as a mechanism to cause or exacerbate pathology, the direct measurement of protein thiols in tissue would be the most appropriate screening tool.  相似文献   

18.
Beating neonatal heart cell cultures were treated with diamide or t-butyl hydroperoxide, and changes in glutathione oxidation, cell beating, and protein S-thiolation (protein mixed-disulfide formation) were examined. Both compounds caused extensive oxidation of glutathione. Cells treated with diamide stopped beating within 2 min, and beating returned to normal after 30-45 min. Cells stopped beating 25 min after the addition of t-butyl hydroperoxide, and beating did not resume. t-Butyl hydroperoxide caused S-thiolation of a variety of proteins, but only one protein, of molecular mass 23 kDa, was extensively modified. Diamide caused extensive modification of proteins with molecular masses of 97, 42 and 23 kDa as well as three proteins of about 35 kDa. Though the GSSG content of cell cultures returned to normal by 15 min after diamide treatment. S-thiolation of several proteins persisted. These studies show that S-thiolation of proteins is an important metabolic response in cells exposed to an oxidative challenge by t-butyl hydroperoxide or diamide, and that the specificity of the response depends on the agent used.  相似文献   

19.
Treatment of rats with diamide (100 mg/kg i.p.) altered the thiol components of the blood to a very different extent than in tissues (liver, kidney, lung, spleen, heart and testis). A total consumption (10 min) and regeneration (120 min) of blood glutathione (GSH), matched by a parallel increase and decrease in glutathione-protein mixed disulfides (GS-SP) was observed. In contrast, no modification of non-protein SH groups (NPSH) and protein SH groups (PSH), GS-SP and malondialdehyde (MDA) was observed in liver, kidney, lung, testis spleen and heart within same time range. In particular, only glutathione disulfide (GSSG) levels and some activities of antioxidant enzymes were modified to a small extent and in an opposite direction in some organs. For example, GSSG, and glucose-6-phosphate dehydrogenase (G-6-PDH) and catalase (CAT) activities appeared up-regulated in one tissue and down-regulated in another. The least modified organ was the liver, whereas lung and spleen were the most affected (lung, GSSG, significantly increased whereas G-6-PDH, glutaredoxin (GRX), GPX, superoxide dimutase (SOD) levels were significantly lowered; spleen, GSSG and the activity of glutathione reductase (GR), G-6-PDH and glutathione transferase (GST) were significantly decreased). The different responses of erythrocytes and organs to diamide were explained by the high affinity of hemoglobin and by the relatively high potential of thiol regeneration in organs. The rapid reversibility of the process of protein S-thiolation in blood and the small effects in organs leads us to propose the existence of an inter-organ cooperation in the rat that regulates protein S-thiolation in blood. Plasma thiols may well play a role in this process.  相似文献   

20.
The S-thiolated proteins phosphorylase b (Phb) and carbonic anhydrase III (CAIII) were prepared with [3H]glutathione in a reaction initiated with diamide. These substrates were used to measure the rate of reduction (dethiolation) of protein mixed-disulfides by enzymes with properties similar to those of thioredoxin and glutaredoxin. This enzyme activity is termed a dethiolase since the identities of the enzymes are still unknown. The dethiolation of either S-[3H]glutathiolated Phb or S-[3H]glutathiolated CAIII was employed in tissue assays and for study of two partially purified dethiolases from cardiac tissue. NADPH-dependent dethiolase activity was most abundant except in rat liver and muscle. Total dethiolase activity was approximately 10-fold higher in neutrophils, 3T3-L1 cells, and Escherichia coli than in other sources. Rat skeletal muscle had 3- to 4-fold higher dethiolase activity than rat heart or liver. These data indicate that protein dethiolase activity is ubiquitous and that normal expression of the two dethiolase activities varies considerably. A partially purified cardiac NADPH-dependent dethiolase acted on Phb approximately 1.5 times faster than CAIII, and a glutathione (GSH)-dependent dethiolase acted on Phb 3 times faster than CAIII. The Km for glutathione for the GSH-dependent dethiolase was 15 microM with Phb as substrate and 10 microM with CAIII. Thus, the GSH-dependent dethiolase is probably not affected by normal changes in the cardiac glutathione content (normally approximately 3 mM). Partially purified cardiac NADPH-dependent dethiolase was inactivated by BCNU (N,N'-bis(2-chloroethyl)-N-nitrosourea) and the GSH-dependent dethiolase was unaffected under similar conditions. In a soluble extract from bovine heart, 200 microM BCNU inhibited NADPH-dependent dethiolase by more than 60% but did not affect GSH-dependent activity. These results demonstrate that BCNU is a selective inhibitor of the NADPH-dependent dethiolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号