首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligosaccharides of well-defined molecular size were prepared from heparin by nitrous acid depolymerization, affinity chromatography on immobilized antithrombin III (see footnote on Nomenclature) and gel chromatography on Sephadex G-50. High affinity (for antithrombin III) octa-, deca-, dodeca-, tetradeca-, hexadeca- and octadeca-saccharides were prepared, as well as oligosaccharides of larger size than octadecasaccharide. The inhibition of Factor Xa by antithrombin III was greatly accelerated by all of these oligosaccharides, the specific anti-Factor Xa activity being invariably greater than 1300 units/mumol. The anti-Factor Xa activity of the decasaccharide was not significantly decreased in the presence of platelet factor 4, even at high platelet factor 4/oligosaccharide ratios. Measurable but incomplete neutralization of the anti-Factor Xa activities of the tetradeca- and hexadeca-saccharides was observed, and complete neutralization of octadeca- and larger oligo-saccharides was achieved with excess platelet factor 4. The octa-, deca-, dodeca-, tetradeca- and hexadeca-saccharides had negligible effect on the inhibition of thrombin by antithrombin III, whereas specific anti-thrombin activity was expressed by the octadeca-saccharide and by the larger oligosaccharides. An octadecasaccharide is therefore the smallest heparin fragment (prepared by nitrous acid depolymerization) that can accelerate thrombin inhibition by antithrombin III. The anti-thrombin activities of the octadecasaccharide and larger oligosaccharides were more readily neutralized by platelet factor 4 than were their anti-Factor Xa activities. These findings are compatible with two alternative mechanisms for the action of platelet factor 4, both involving the binding of the protein molecule adjacent to the antithrombin III-binding site. Such binding results in either steric interference with the formation of antithrombin III-proteinase complexes or in displacement of the antithrombin III molecule from the heparin chain.  相似文献   

2.
d-Glucuronate and l-iduronate-containing disaccharides related to the antithrombin-binding domain of heparin were prepared. The carboxylic function of the uronic acid unit was formed on a disaccharide level in the case of the glucuronate, while on a monosaccharide level in the case of the iduronate derivatives. Synthesis of their sulfonic acid analogues was carried out analoguosly applying sulfonatomethyl-containing acceptors in the form of either salts or methyl esters. Significant difference could be observed in the methyl ether formation reactions of the sulfonatomethyl-containing uronate disaccharides and the non-sulfonic acid uronates.  相似文献   

3.
1. Preparations of heparin and heparan sulphate were degraded with HNO2. The resulting disaccharides were isolated by gel chromatography, reduced with either NaBH4 or NaB3H4 and were then fractionated into non-sulphated, monosulphated and disulphated species by ion-exchange chromatography or by paper electrophoresis. The non-sulphated disaccharides were separated into two, and the monosulphated disaccharides into three, components by paper chromatography. 2. The uronic acid moieties of the various non- and mono-sulphated disaccharides were identified by means of radioactive labels selectively introduced into uronic acid residues (3H and 14C in D-glucuronic acid, 14C only in L-iduronic acid units) during biosynthesis of the polysaccharide starting material. Labelled uronic acids were also identified by paper chromatography, after liberation from disaccharides by acid hydrolysis or by glucuronidase digestion. Similar procedures, applied to disaccharides treated with NaB3H4, indicated 2,5-anhydro-D-mannitol as reducing terminal unit. On the basis of these results, and the known positions and configurations of the glycosidic linkages in heparin, the two non-sulphated disaccharides were identified as 4-O-(beta-D-glucopyranosyluronic acid)-2,5-anhydro-D-mannitol and 4-O-(alpha-L-idopyranosyluronic acid)-2,5-anhydro-D-mannitol. 3. The three monosulphated [1-3H]anhydromannitol-labelled disaccharides were subjected to Smith degradation or to digestion with homogenates of human skin fibroblasts, and the products were analysed by paper electrophoresis. The results, along with the 1H n.m.r. spectra of the corresponding unlabelled disaccharides, permitted the allocation of O-sulphate groups to various positions in the disaccharides. These were thus identified as 4-O-(beta-D-glucopyranosyl-uronic acid)-2,5-anhydro-D-mannitol 6-sulphate, 4-O-(alpha-L-idopyranosyluronic acid)-2,5-anhydro-D-mannitol 6-sulphate and 4-O-(alpha-L-idopyranosyluronic acid 2-sulphate)-2,5-anhydro-D-mannitol. The last-mentioned disaccharide was found to be a poor substrate for the iduronate sulphatase of human skin fibroblasts, as compared with the disulphated species, 4-O-(alpha-L-idopyranosyluronic acid 2-sulphate)-2,5-anhydro-D-mannitol 6-sulphate. 4. The identified [1-3H]anhydromannitol-labelled disaccharides were used as reference standards in a study of the disaccharide composition of heparins and heparan sulphates. Low N-sulphate contents, most pronounced in the heparin sulphates, were associated with high ratios of mono-O-sulphated/di-O-sulphated (N-sulphated) disaccharide units, and in addition, with relatively large amounts of 2-sulphated L-iduronic acid residues bound to C-4 of N-sulpho-D-glucosamine units lacking O-sulphate substituents.  相似文献   

4.
The kinetic constants of the site-specific endonuclease, ScaI, for various substrates were determined. We estimated Vmax and Km for octa-, deca-, dodeca-, and hexadecanucleotides and for plasmid pBR322 DNA. Vmax for these substrates were close, but Km were quite different (in decreasing order, octa- greater than deca-, dodeca-, hexadeca- greater than pBR322). The results were discussed with respect to the tertiary structure of substrate.  相似文献   

5.
Carbohydrate chip technology has a great potential for the high-throughput evaluation of carbohydrate-protein interactions. Herein, we report syntheses of novel sulfated oligosaccharides possessing heparin and heparan sulfate partial disaccharide structures, their immobilization on gold-coated chips to prepare array-type Sugar Chips, and evaluation of binding potencies of proteins by surface plasmon resonance (SPR) imaging technology. Sulfated oligosaccharides were efficiently synthesized from glucosamine and uronic acid moieties. Synthesized sulfated oligosaccharides were then easily immobilized on gold-coated chips using previously reported methods. The effectiveness of this analytical method was confirmed in binding experiments between the chips and heparin binding proteins, fibronectin and recombinant human von Willebrand factor A1 domain (rh-vWf-A1), where specific partial structures of heparin or heparan sulfate responsible for binding were identified.  相似文献   

6.
The molecular structure of human skin fibroblast heparan sulphate was examined by specific chemical or enzymic depolymerization and high-resolution separation of the resulting oligosaccharides and disaccharides. Important features of the molecular organization, disaccharide composition and O-sulphate disposition of this heparan sulphate were identified. Analysis of the products of HNO2 hydrolysis revealed a polymer in which 53% of disaccharide units were N-acetylated and 47% N-sulphated, with an N-/O-sulphate ratio of 1.8:1. These two types of disaccharide unit were mainly located in separate domains. Heparitinase and heparinase scission indicated that the iduronate residues (37% of total hexuronate) were largely present in contiguous disaccharide sequences of variable size that also contained the majority of the N-sulphate groups. Most of the iduronate residues (approx. 70%) were non-sulphated. About 8-10% of disaccharide units were cleaved by heparinase, but only a minority of these originated from contiguous sequences in the intact polymer. Trisulphated disaccharide units [alpha-N-sulpho-6-sulphoglucosaminyl-(1----4)-iduronate 2-sulphate], which are the major structural units in heparin, made up only 3% of the disaccharide units in heparan sulphate. O-Sulphate groups (approx. 26 per 100 disaccharide units) were distributed almost evenly among C-6 of N-acetylglucosamine, C-2 of iduronate and C-6 of N-sulphated glucosamine residues. The results indicate that the sulphated regions of heparan sulphate have distinctive and potentially variable structural characteristics. The high content of non-sulphated iduronate in this heparan sulphate species suggests a conformational versatility that could have important implications for the biological properties of the polymer.  相似文献   

7.
We determined the disaccharide composition of dermatan sulfate (DS) purified from the skin of the electric eel Electrophorus electricus. DS obtained from the electric eel was composed of non-sulfated, mono-sulfated disaccharides bearing esterified sulfate groups at positions C-4 or C-6 of N-acetyl galactosamine (GalNAc), and disulfated disaccharides bearing esterified sulfate groups at positions C-2 of the uronic acid and at position C-4 or C-6 of GalNAc. The anticoagulant, antithrombotic and bleeding effects of electric eel skin DS were compared to those of porcine DS and also to those described previously for DS purified from skin of eel, Anguilla japonica. DS from electric eel is a potent anticoagulant due to a high heparin co-factor II (HC II) activity. The electric eel DS has a higher potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the porcine DS. Interestingly, it was recently demonstrated that DS obtained from skin of the eel Anguilla japonica, which possesses a disaccharide composition very similar to that of electric eel skin DS described here, did not show anticoagulant activity. Thus, the anticoagulant activity of electric eel skin DS is not merely a consequence of its charge density. We speculate that the differences among the anticoagulant activities of these three DS may be related to different arrangements of the disulfated disaccharide domain for binding to HC II within their polysaccharide chains and that it may be more efficiently arranged along the carbohydrate chain in electric eel skin DS than in the two other types of DS.  相似文献   

8.
Topically applied heparin and heparan sulfate disaccharides, with the basic structure delta-4,5 uronyl-(1----4)-glucosamine and bearing a sulfate at the C-6 position of the glucosamine residue, are antihemostatics as potent as heparin, producing uncontrollable hemorrhage from small blood vessels. The finding that other sulfated disaccharides with the same sulfate:hexosamine:uronic acid ratios but with the sulfate at a different position (C-2), or with different glycosidic linkage (1----3), were inactive as inhibitors of hemostasis indicates that a specific structure is needed to produce the effect. The inhibitory activity of the normal hemostatic process could be reversed by ATP. Molecular models show that part of the disaccharide inhibitors and ATP hold a similar structural conformation.  相似文献   

9.
The disaccharide repeating-units of heparan sulfate   总被引:11,自引:0,他引:11  
Five disaccharides have been isolated after degradation of heparan sulfate by heparinase (heparin lyase) and heparitinase (heparan sulfate lyase) and are suggested to represent the repeating units of the polysaccharide. They all contain a 4,5-unsaturated uronic acid residue and are: (a) A trisulfated disaccharide that is apparently identical to a disaccharide repeating-unit of heparin; (b) a disulfated disaccharide that seems unique for heparan sulfate and contains 2-deoxy-2-sulfamidoglucose and uronic acid sulfate residues; (c) a nonsulfated disaccharide containing a 2-acetamido-2-deoxyglucose residue; (d) a monosulfated disaccharide containing a 2-acetamido-2-deoxyglucose sulfate residue; and (e) a monosulfated disaccharide containing a 2-deoxy-2-sulfamidoglucose residue. Yields of these disaccharides from different heparan sulfate fractions are discussed in relation to possible arrangements of these units in the intact polymer.  相似文献   

10.
Heparin like glycosaminoglycans (HLGAGs) are struc-turally complex linear polysaccharides composed of re-peating disaccharide unit of uronic (α-L-iduronic or β-D-glucuronic) acid linked 1→4 to α-D-glucosamine, whichis a highly variable sulfation pattern and ascribes to eachglycosaminoglycan (GAG) chain a unique structuralsignature. This signature dictates specific the GAG-pro-tein interactions underlying critical biological processesrelated to cell and tissue functions [1]. Only in fe…  相似文献   

11.
The interactions between cell surface receptors and sulfated glucosamineglycans serve ubiquitous roles in cell adhesion and receptor signaling. Heparin, a highly sulfated polymer of uronic acids and glucosamine, binds strongly to the integrin receptor alphaXbeta2 (p150,95, CD11c/CD18). Here, we analyze the structural motifs within heparin that constitute high affinity binding sites for the I domain of integrin alphaXbeta2. Heparin oligomers with chain lengths of 10 saccharide residues or higher provide strong inhibition of the binding by the alphaX I domain to the complement fragment iC3b. By contrast, smaller oligomers or the synthetic heparinoid fondaparinux were not able to block the binding. Semipurified heparin oligomers with 12 saccharide residues identified the fully sulfated species as the most potent antagonist of iC3b, with a 1.3 microM affinity for the alphaX I domain. In studies of direct binding by the alphaX I domain to immobilized heparin, we found that the interaction is conformationally regulated and requires Mg2+. Furthermore, the fully sulfated heparin fragment induced conformational change in the ectodomain of the alphaXbeta2 receptor, also demonstrating allosteric linkage between heparin binding and integrin conformation.  相似文献   

12.
Conformation and dynamics of heparin and heparan sulfate   总被引:10,自引:0,他引:10  
Mulloy B  Forster MJ 《Glycobiology》2000,10(11):1147-1156
The glycosaminoglycans heparin and heparan sulfate contain similar structural units in varying proportions providing considerable diversity in sequence and biological function. Both compounds are alternating copolymers of glucosamine with both iduronate- and glucuronate-containing sequences bearing N-sulfate, N-acetyl, and O-sulfate substitution. Protein recognition of these structurally-diverse compounds depends upon substitution pattern, overall molecular shape, and on internal mobility. In this review particular attention is paid to the dynamic aspects of heparin/heparan sulfate conformation. The iduronate residue possesses an unusually flexible pyranose ring conformation. This extra source of internal mobility creates special problems in rationalization of experimental data for these compounds. We present herein the solution-state NMR parameters, fiber diffraction data, crystallographic data, and molecular modeling methods employed in the investigation of heparin and heparan sulfate. Heparin is a useful model compound for the sulfated, protein-binding regions of heparan sulfate. The literature contains a number of solution and solid-state studies of heparin oligo- and polysaccharides for both isolated heparin species and those bound to protein receptors. These studies indicate a diversity of iduronate ring conformations, but a limited range of glycosidic linkage geometries in the repeating disaccharides. In this sense, heparin exhibits a well-defined overall shape within which iduronate ring forms can freely interconvert. Recent work suggests that computational modeling could potentially identify heparin binding sites on protein surfaces.  相似文献   

13.
We compared the disaccharide composition of dermatan sulfate (DS) purified from the ventral skin of three species of rays from the Brazilian seacoast, Dasyatis americana, Dasyatis gutatta, Aetobatus narinari and of Potamotrygon motoro, a fresh water species that habits the Amazon River. DS obtained from the four species were composed of non-sulfated, mono-sulfated disaccharides bearing esterified sulfate groups at positions C-4 or C-6 of N-acetyl galactosamine (GalNAc), and disulfated disaccharides bearing esterified sulfate groups at positions C-2 of the uronic acid and at position C-4 or C-6 of GalNAc. However, DS from the skin of P. motoro presented a very low content of the disulfated disaccharides. The anticoagulant actions of ray skin DS, measured by both APTT clotting and HCII-mediated inhibition of thrombin assays, were compared to that of mammalian DS. DS from D. americana had both high APTT and HCII activities, whereas DS from D. gutatta showed activity profiles similar to those of mammalian DS. In contrast, DS from both A. narinari and P. motoro had no measurable activity in the APTT assay. Thus, the anticoagulant activity of ray skin DS is not merely a consequence of their charge density. We speculate that the differences among the anticoagulant activities of these three DS may be related to both different composition and arrangements of the disulfated disaccharide units within their polysaccharide chains.  相似文献   

14.
A rapid and simple analytical method for unsaturated disaccharide isomers formed by enzymatic digestion from hyaluronic acid, chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin by high-performance liquid chromatography using an amine-bound silica column with a linear gradient of sodium dihydrogen phosphate was developed. The analyses were performed on isomers of two groups belonging to the chondroitin sulfate family and the heparin sulfate family. In both families, disaccharide isomers eluted in the order non-, mono-, di-, and trisulfated disaccharides by elevating salt concentrations. The method was applied to the analysis of constituent disaccharides of representative sulfated glycosaminoglycans, which proved that most constituents could be quantified separately. This method is advantageous in that enzymatic digests can be applied directly on a column without any pretreatment and good resolution of several disaccharides can be obtained by one chromatography.  相似文献   

15.
Disaccharide mimetics of a heparin sequence that binds to fibroblast growth factors were prepared by coupling a D-galactose donor with a methyl beta-D-gluco- or xylopyranoside acceptor. When fully sulfated, the glucose or xylose moieties exist in solution in equilibrium between the (4)C1 and (1)C4 conformers, as confirmed by 1H NMR spectroscopy, thus mimicking the conformationally flexible L-iduronic acid found in heparin. Docking calculations showed that the predicted locations of disaccharide sulfo groups in the binding site of FGF-1 are consistent with the positions observed for co-crystallized heparin-derived oligosaccharides. Predicted binding affinities are in accord with experimental Kd values obtained from binding assays and are similar to the predicted values for a model heparin disaccharide.  相似文献   

16.
《Analytical biochemistry》1985,149(1):261-268
Various under-sulfated, monosulfated, and over-sulfated chondroitin sulfate and dermatan sulfate isomers were analyzed in terms of disaccharide units before or after desulfation with chondrosulfatases in addition to digestion with chondroitinases. The unsaturated disaccharides were separable by a high-performance liquid chromatography (HPLC) method using a resin made from a sulfonized styrene-divinylbenzene copolymer. The retention times of the parent sulfated unsaturated disaccharides and newly generated unsaturated mono- or nonsulfated disaccharides were reproducible. On desulfation of the parent sulfated unsaturated disaccharides with chondrosulfatases, almost all ΔDi-S showed the same retention times as those of standard ΔDi-S from known components. Following digestion of ΔDi-diSB with chondro-4-sulfatase as well as ΔDi-diSD or ΔDi-diSG with chondro-6-sulfatase, three ΔDi-monoS with the same retention time were detected with the HPLC method. These newly generated ΔDi-monoS2 showed that the structure is N-acetyl-d-galactosamine, uronic acid 2-sulfate.  相似文献   

17.
The commonly used food additive carrageenan, including lambda (λ), kappa (κ) and iota (ι) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.  相似文献   

18.
In the framework of a project aimed at generating heparin-like sulfation patterns and biological activities in biotechnological glycosaminoglycans, different approaches have been considered for simulating the alpha(1-->4)-linked 2-O-sulfated L-iduronic acid (IdoA2SO(3))-->N,6-O-sulfated D-glucosamine (GlcNSO(3)6SO(3)) disaccharide sequences prevalent in mammalian heparins. Since the direct approach of sulfating totally O-desulfated heparins, taken as model compounds for C-5-epimerized sulfaminoheparosan (N-deacetylated, N-sulfated Escherichia coli K5 polysaccharide), preferentially afforded heparins O-sulfated at C-3 instead than at C-2 of the iduronate residues, leading to products with low anticoagulant activities, the problem of re-generating a substantial proportion of the original IdoA2SO(3) residues was circumvented by performing controlled solvolytic desulfation (with 9:1 v/v DMSO-MeOH) of extensively sulfated heparins. The order of desulfation of major residues of heparin GlcN and IdoA and of the minor one D-glucuronic acid was: GlcNSO(3)>GlcN6SO(3)>IdoA3SO(3) congruent with GlcA2SO(3) congruent with GlcN3SO(3)>IdoA2SO(3) congruent with GlcA3SO(3). Starting from a 'supersulfated' low-molecular weight heparin, we obtained products with up to 40% of iduronate residues O-sulfated exclusively at C-2 and up to 40% of their glucosamine residues O-sulfated at both C-6 and C-3. Upon re-N-sulfation, these products displayed an in vitro antithrombotic activity (expressed as anti-factor Xa units) comparable with those of current low-molecular weight heparins.  相似文献   

19.
The minimum concentrations of heparin, dermatan sulfate, hirudin, and D-Phe-Pro-ArgCH2Cl required to delay the onset of prothrombin activation in contact-activated plasma also prolong the lag phases associated with both factor X and factor V activation. Heparin and dermatan sulfate prolong the lag phases associated with the activation of the three proteins by catalyzing the inhibition of endogenously generated thrombin. Thrombin usually activates factor V and factor VIII during coagulation. The smallest fragment of heparin able to catalyze thrombin inhibition by antithrombin III is an octadecasaccharide with high affinity for antithrombin III. In contrast, a dermatan sulfate hexasaccharide with high affinity for heparin cofactor II can catalyze thrombin inhibition by heparin cofactor II. A highly sulfated bis(lactobionic acid amide), LW10082 (Mr 2288), which catalyzes thrombin inhibition by heparin cofactor II and has both antithrombotic and anticoagulant activities, has been synthesized. In this study, we determined how the minimum concentration of LW10082 required to delay the onset of intrinsic prothrombin activation achieved this effect. We demonstrate that, like heparin and dermatan sulfate, LW10082 delays the onset of intrinsic prothrombin activation by prolonging the lag phase associated with both factor X and factor V activation. In addition, LW10082 is approximately 25% as effective as heparin and 10 times as effective as dermatan sulfate in its ability to delay the onset of prothrombin activation. The strong anticoagulant action of LW10082 is consistent with previous reports which show that the degree of sulfation is an important parameter for the catalytic effectiveness of sulfated polysaccharides on thrombin inhibition.  相似文献   

20.
《Analytical biochemistry》1997,251(2):219-226
A new, simple, and highly sensitive method for the determination of heparin has been established. Heparin was first converted into unsaturated disaccharides through the action of heparin lyases I, II, and III. A major trisulfated unsaturated disaccharide product results, consistent with structural analysis of a number of pharmaceutical heparins using one- and two-dimensional1H NMR spectroscopy. This disaccharide was analyzed by HPLC using fluorometric postcolumn derivatization. The correlation between the amount of this trisulfated unsaturated disaccharide and anticoagulant activity of heparin as measured by anti-IIa was determined. The analysis of these pharmaceutical heparins showed a linear correlation between both HPLC and bioassay. This HPLC method was then applied to a pharmacokinetic study of heparin intravenously administered to rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号