首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pea Plants ( Pisum sativaum L. ev. Little Marvel) were grown in N-free medium and when well nodulated (28 days) were supplied for 8 days with nitrate or ammonium. Over the 8 days of nitrate treatment, total amino and amide N in sap declined, and the proportion of aspartate relative to the other amino acids increased. After 8 days of treatment, nitrogenase (EC 1.18.2.1) activity in nitrate-treated plants declined to about 30% of the activity in controls even though nodules were not directly in contact with nutrient solution. Nitrogenase activity was also decreased by the addition of ammonium chloride (10 m M ). With addition of nitrate or ammonium. clear signs of senescence began to show in the nodules after 4 days. Nitrate reductase (EC 1.6.6.1) activity was induced in roots by nitrate, but decreased sharply in nodules. In response to nitrate addition, newly formed root tissues showed 3- to 5-times higher glutamine synthetase (GS. EC 6.3.1.4) activity than newly formed tissues of control plants, expressed on a protein or weight basis. In complementary experiments, when ammonium salts were used instead of nitrates, the increase in GS activity was significantly lower. GS activity decreased in nodules of treated plants and total extractable protein was 3 times lower in nodules of nitrate-treated plants than in controls at day 8 of treatment.  相似文献   

2.
Nitric oxide (NO) is emerging as an important regulatory player in the Rhizobium-legume symbiosis, but its biological role in nodule functioning is still far from being understood. To unravel the signal transduction cascade and ultimately NO function, it is necessary to identify its molecular targets. This study provides evidence that glutamine synthetase (GS), a key enzyme for root nodule metabolism, is a molecular target of NO in root nodules of Medicago truncatula, being regulated by tyrosine (Tyr) nitration in relation to active nitrogen fixation. In vitro studies, using purified recombinant enzymes produced in Escherichia coli, demonstrated that the M. truncatula nodule GS isoenzyme (MtGS1a) is subjected to NO-mediated inactivation through Tyr nitration and identified Tyr-167 as the regulatory nitration site crucial for enzyme inactivation. Using a sandwich enzyme-linked immunosorbent assay, it is shown that GS is nitrated in planta and that its nitration status changes in relation to active nitrogen fixation. In ineffective nodules and in nodules fed with nitrate, two conditions in which nitrogen fixation is impaired and GS activity is reduced, a significant increase in nodule GS nitration levels was observed. Furthermore, treatment of root nodules with the NO donor sodium nitroprusside resulted in increased in vivo GS nitration accompanied by a reduction in GS activity. Our results support a role of NO in the regulation of nitrogen metabolism in root nodules and places GS as an important player in the process. We propose that the NO-mediated GS posttranslational inactivation is related to metabolite channeling to boost the nodule antioxidant defenses in response to NO.  相似文献   

3.
4.
It was reported recently that the plastid-located glutamine synthetase (GS2) from Medicago truncatula is regulated by phosphorylation catalysed by a calcium-dependent protein kinase and 14-3-3 interaction. Here it is shown that the two cytosolic GS isoenzymes, GS1a and GS1b, are also regulated by phosphorylation but, in contrast to GS2, GS1 phosphorylation is catalysed by calcium-independent kinase(s) and the phosphorylated enzymes fail to interact with 14-3-3s. Phosphorylation of GS1a occurs at more than one residue and was found to increase the affinity of the enzyme for the substrate glutamate. In vitro phosphorylation assays were used to compare the activity of GS kinase, present in different plant organs, against the three M. truncatula GS isoenzymes. All three GS proteins were phosphorylated by kinases present in leaves, roots, and nodules, but to different extents, suggesting a differential regulation under different metabolic contexts. Cytosolic GS phosphorylation was found to be affected by light in leaves and by active nitrogen fixation in root nodules, whereas GS2 phosphorylation was unaffected by these conditions. Some putative GS-binding phosphoproteins were identified showing both isoenzyme and organ specificity. Two phosphoproteins of 70 and 72 kDa were specifically bound to the cytosolic GS isoenzymes. Interestingly, phosphorylation of these proteins was also influenced by the nitrogen-fixing status of the nodule, suggesting that their phosphorylation and/or binding to GS are related to nitrogen fixation. Taken together, the results presented indicate that GS phosphorylation is modulated by nitrogen fixation in root nodules; these findings open up new possibilities to explore the involvement of this post-translational mechanism in nodule functioning.  相似文献   

5.
6.
In Pisum sativum, two classes of genes encode distinct isoforms of cytosolic glutamine synthetase (GS). The first class comprises two nearly identical or “twin” GS genes (GS341 and GS132), while the second comprises a single GS gene (GS299) distinct in both coding and noncoding regions from the “twin” GS genes. Gene-specific analyses were used to monitor the individual contribution of each gene for cytosolic GS during root nodule development and in cotyledons during germination, two contexts where large amounts of ammonia must be assimilated by GS for nitrogen transport. mRNAs corresponding to all three genes for cytosolic GS were shown to accumulate coordinately during a time course of nodule development. All the GS mRNAs also accumulate to wild-type levels in mutant nodules formed by a nifD strain of Rhizobium leguminosarum indicating that induced GS expression in pea root nodules does not depend on the production of ammonia. Distinct patterns of expression for the two classes of GS genes were observed in certain mutant root nodules and most dramatically in cotyledons of germinating seedlings. The different patterns of expression between the two classes of genes for cytosolic GS suggests that their distinct gene products may serve nonoverlapping functions during pea development.  相似文献   

7.
8.
9.
Summary Immunogold labelling was used to detect the cellular and sub-cellular distribution of glutamine synthetase (GS) in nodulatedGlycine max var. maple arrow. The protein was detected in thin sections of tissue embedded in LR white acrylic resin by employing two polyclonal antibody preparations, one active chloroplastic GS, the other against the cytosolic form of the enzyme. In the mature leaf tissue, GS was visualized only in the chloroplasts, exclusively within the stroma matrix; in the root cortical tissue, the enzyme was distributed homogenously in the cytosol but with a slight preferential localization associated with certain endomembranes, whereas in the root nodules both cytosolic and plastidial compartments were labelled in infected and uninfected cells. Particular to the infected cells, the bacteroids' inner matrix reacted slightly to the GS antibody and a strong signal was preferentially localized on the bacteroids' outer envelope membranes. In general, GS was more concentrated in nodules as estimated by gold particle distribution, whether in the cytosol, plastids or on the bacteroid envelope membranes, than in either root tissue or leaf tissue. Although the cytoplasmic labelling density in nodules was similar in uninfected and infected cells, certain structural features in the latter (abundant cytosol, numerous GS-positive bacteroids and GS-reactive proplastids) contribute to a more enzyme-rich type than its uninfected counterpart.Abbrevation GS glutamine synthetase  相似文献   

10.
11.
Glutamine synthetase (GS; EC 6.3.1.2) is present in different subcellular compartments in plants. It is located in the cytoplasm in root and root nodules while generally present in the chloroplasts in leaves. The expression of GS gene(s) is enhanced in root nodules and in soybean roots treated with ammonia. We have isolated four genes encoding subunits of cytosolic GS from soybean (Glycine max L. cv. Prize). Promoter analysis of one of these genes (GS15) showed that it is expressed in a root-specific manner in transgenic tobacco and Lotus corniculatus, but is induced by ammonia only in the legume background. Making the GS15 gene expression constitutive by fusion with the CaMV-35S promoter led to the expression of GS in the leaves of transgenic tobacco plants. The soybean GS was functional and was located in the cytoplasm in tobacco leaves where this enzyme is not normally present. Forcing this change in the location of GS caused concomitant induction of the mRNA for a native cytosolic GS in the leaves of transgenic tobacco. Shifting the subcellular location of GS in transgenic plants apparently altered the nitrogen metabolism and forced the induction in leaves of a native GS gene encoding a cytosolic enzyme. The latter is normally expressed only in the root tissue of tobacco. This phenomenon may suggest a hitherto uncharacterized metabolic control on the expression of certain genes in plants.  相似文献   

12.
The two isoenzymes of NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14), previously identified in root nodules of Phaseolus vulgaris L., have both been shown to be located in root-nodule plastids. The nodule specific NADH-GOGAT II accounts for the majority of the activity in root nodules, and is present almost exclusively in the central tissue of the nodule. However about 20% of NADH-GOGAT I activity is present in the nodule cortex, at about the same specific activity as this isoenzyme is found in the central tissue. Glutamine synthetase (GS; EC 6.3.1.2) occurs predominantly as the polypeptide in the central tissue, whereas in the cortex, the enzyme is represented mainly by the polypeptide. Over 90% of both GS and NADH-GOGAT activities are located in the central tissue of the nodule and GS activity exceeds NADH-GOGAT activity by about twofold in this region. Using the above information, a model for the subcellular location and stoichiometry of nitrogen metabolism in the central tissue of P. vulgaris root nodules is presented.Abbreviations Fd-GOGAT ferredoxin-dependent glutamate synthase - GOGAT glutamate synthase - GS glutamine synthetase - NADH-GOGAT NADH-dependent glutamate synthase - IEX-HPLC ion-exchange high-performance liquid chromatography  相似文献   

13.
14.
A clone of Alnus incana (L.) Moench was grown in symbiosis with a local source of Frankia or with Frankia Ar14. Seven to 9-week-old plants were given 20 m M NH4Cl (20 m M KCl = control) for 3 days. Nitrogenase activity of intact plants decreased gradually within the 3 days of treatment to about 10% of the initial rates. Hydrogen evolution in air and total nitrogenase activity responded similarly to the treatment. Relative efficiency of nitrogenase thus remained the same throughout the study period. Control plants were not affected. Measurements of nitrogenase activity in root nodule homogenates (in vitro measurements) indicated loss of active nitrogenase rather than shortage of energy for nitrogenase activity in Frankia from ammonium-treated plants. Shoots were exposed to 14CO2 and translocation of 14C to Frankia vesicle clusters prepared from root nodules was studied. Frankia vesicle clusters from ammonium-treated plants contained about half as much 14C as those of control plants during all 3 days studied. One explanation for the observed effects is that a reduced supply of carbon to Frankia vesicles in the root nodules caused a reduced metabolic rate, including reduced protein synthesis and synthesis of nitrogenase.  相似文献   

15.
16.
Fei H  Chaillou S  Hirel B  Mahon JD  Vessey JK 《Planta》2003,216(3):467-474
A glutamine synthetase gene ( GS15) coding for soybean cytosolic glutamine synthetase (GS1) fused to a constitutive promoter (CaMV 35S), a putative nodule-specific promoter (LBC(3)) and a putative root-specific promoter (rolD) was transformed into Pisum sativum L. cv. Greenfeast. Four lines with single copies of GS15 (one 35S-GS15 line, one LBC (3) -GS15 line, and two rolD-GS15 lines) were tested for the expression of GS15, levels of GS1, GS activity, N accumulation, N(2) fixation, and plant growth at different levels of nitrate. Enhanced levels of GS1 were detected in leaves of three transformed lines (the 35S-GS15 and rolD-GS15 transformants), in nodules of three lines (the LBC (3) -GS15 and rolD-GS15 transformants), and in roots of all four transformants. Despite increased levels of GS1 in leaves and nodules, there were no differences in GS activity in these tissues or in whole-plant N content, N(2) fixation, or biomass accumulation among all the transgenic lines and the wild-type control. However, the rolD-GS15 transformants, which displayed the highest levels of GS1 in the roots of all the transformants, had significantly higher GS activity in roots than the wild type. In one of the rolD-GS15 transformed lines (Line 8), increased root GS activity resulted in a lower N content and biomass accumulation, supporting the findings of earlier studies with Lotus japonicus (Limami et al. 1999 ). However, N content and biomass accumulation was not negatively affected in the other rolD-GS15 transformant (Line 9) and, in fact, these parameters were positively affected in the 0.1 mM treatment. These findings indicate that overexpression of GS15 in various tissues of pea does not consistently result in increases in GS activity. The current study also indicates that the increase in root GS activity is not always consistent with decreases in plant N and biomass accumulation and that further investigation of the relationship between root GS activity and growth responses is warranted.  相似文献   

17.
When Phaseolus vulgaris L. cv. Kentucky Wonder plants were supplied with various levels of nitrate for 34 days, nodule weight (plant)−1, acetylene reduction activity (g nodule)−1, and sugar concentration in nodules were depressed >60% (7.5 m M nitrate vs nil nitrate). Starch concentration in nodules was more than double the sugar concentration and declined only slightly in response to nitrate level. At the highest level of nitrate, sugar concentration in nodules was 50% greater than that in roots and nodule starch was about 6-fold greater than root starch on a fresh weight basis. When plants were grown with 1 m M nitrate and then supplied with 12 m M nitrate for 7 days, the rapid decline in acetylene reduction activity coincided with a decline in sucrose concentration. However, glucose and fructose concentrations declined only after the largest decrease in acetylene reduction had occurred, and the quantitative decrease in glucose and fructose in nodules was small relative to sucrose. Other results showed that the magnitude of the effect of nitrate on some nodule carbohydrate compounds depends on Rhizobium phaseoli strain and on whether plants were grown with or without nitrate prior to experimental treatments. Some of the results are consistent with the carbohydrate-deprivation hypothesis for inhibition of legume nodules by nitrate. However, there are several complications involved in the interpretation of results of this type, and other possible explanations for the results are suggested.  相似文献   

18.
19.
20.
Although numerous reports have documented the effect of bacterially-inducedineffectiveness on root nodule structure, function, and plantgene expression, few studies have detailed the effect of theplant genome on similar parameters. In this report effective(N2-fixing) broadbean {Vicia faba L.) and plant-controlled ineffective(non-N2-fixing) broadbean recessive for the sym-1 gene werecompared for nodule structure, developmental expression of noduleenzyme activities, enzyme proteins, and mRNAs involved in Nassimilation, leghemoglobin (Lb) synthesis, and acetylene reductionactivity (ARA). During development of effective wild-type nodules,glutamine synthetase (GS), aspartate aminotransferase (AAT),phosphoenolpyruvate carboxylase (PEPC) and NADH-glutamate synthase(GOGAT) activities and enzyme proteins increased coincidentwith nodule ARA. The increases in GS, AAT, and PEPC were associatedwith increased synthesis of mRNAs for these proteins. Synthesisof Lb polypeptides and mRNAs during development of effectivenodules was similar to that of GS, AAT, and PEPC. By contrast,ineffective sym-1 nodules displayed little or no ARA and hadneither the increases in enzyme activities nor enzyme proteinsand mRNAs as seen for effective nodules. The effect of the sym-1gene appeared to occur late in nodule development at eitherthe stage of bacterial release from infection threads or differentiationof bacteria into bacteroids. High in vitro enzyme activities,enzyme polypeptides, and mRNA levels in parental effective noduleswere dependent upon a signal associated with effective bacteroidsthat was lacking in sym-1 nodules. Nodule organogenesis didnot appear to be a signal for the induction of GS, PEPC, AAT,and Lb expression in sym-1 nodules. Key words: Vicia faba, mutation, sym-1 gene, nodules  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号