首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Current male/female differences in tooth size are due to the male/female differences in body bulk that exist in any given human population. These differences are residues of the sexual dimorphism that was maintained for adaptive reasons during the Middle Pleistocene. Late in the Pleistocene the development of food processing techniques led to the reduction of both male and female dental dimensions. Dental sexual dimorphism, however, was maintained until the very end of the Pleistocene when the hunting of large game animals by crude techniques was replaced by a focus on great numbers of small game caught by more sophisticated means and by an increasing utilization of plant foods. The subsequent reduction in dimorphism represents the actions of the Probable Mutation Effect operating under conditions of relaxed selection. The conclusion offered is that the smallest degree of sexual dimorphism visible in the modern world is to be found among those populations that are separated by the greatest interval of time from precursors who depended for their survival on a Pleistocene big game hunting mode of subsistence.  相似文献   

2.
Sexual size dimorphism in anurans   总被引:4,自引:0,他引:4  
Several hypotheses have been proposed to explain the direction and extent of sexual size dimorphism in anurans (in which males are usually smaller than females) as a result of sexual selection. Here, we present an analysis to test the hypothesis that sexual dimorphism in anurans is largely a function of differences between the sexes in life-history strategies. Morphological and demographic data for anurans were collected from the literature, and the mean size and age in each sex were calculated for 51 populations, across 30 species and eight genera. Comparisons across 14 Rana species, eight Bufo species and across the genera showed a highly significant relationship between size dimorphism, measured using the female-male size ratio, and mean female-male age difference. A comparison of a subset of 17 of these species for which phylogenetic information was available, using the method of independent contrasts, yielded a similar result. These results indicate that most of the variation in size dimorphism in the anura can be explained in terms of differences in the age structure between the sexes in breeding populations. If sexual selection has an effect on size dimorphism in anurans, it is likely to be only a secondary one.  相似文献   

3.
Sexual size dimorphism in parasitoid wasps   总被引:1,自引:0,他引:1  
Sexual dimorphism in body length and proportion of overlap between the ranges of body length for males and females were estimated for 361 species of parasitoid wasps from 21 families. In most species, females are generally larger than males, though the range of male and female sizes overlap. Species in the family Ichneumonidae differ significantly from species in other families in three ways: (1) ichneumonids on average are larger, (2) in most species, females are generally smaller than males, and (3) on average, proportion overlap between the ranges of body length for males and females is greater. At present, there is a paucity of life history data on parasitoid wasp species for which size dimorphism is known. Thus it is not clear why ichneumonids differ from species in other families. Possible evolutionary explanations for variation in dimorphism among parasitoid wasp species are discussed.  相似文献   

4.
Studies of sexual dimorphism have traditionally focused on the static differences in size and shape between adult males and females. In this paper, I suggest that an investigation of the ontogenetic bases of sexual dimorphism can provide new insights and information unobtainable from studies concerned only with adult endpoints. While growth is often viewed as simply the developmental pathway utilized to attain final adult size and shape, we must recognize that it is the entire pattern of sex-differentiated growth, and not merely the adult endpoints, which is adaptive and the target of natural selection. The importance of an ontogenetic approach to the analysis of sexual dimorphism is also demonstrated by the fact that a given morphologicalresult (e.g., a certain degree of adult weight dimorphism) may be attained by very different developmentalprocesses, signalling selection for quite different factors. The need to analyze the ontogenetic bases of sexual dimorphism in size and shape has recently been recognized by Jarman, in his study of dimorphism in large terrestrial herbivores. Here I combine aspects of Jarman’s approach with those of allometry and heterochrony in an analysis of sexual dimorphism in selected anthropoid primates. It is demonstrated that although all dimorphic anthropoids appear to be characterized by somebimaturism, the degree varies significantly. Marked weight dimorphism in certain species is primarily produced by an increased differentiation of female and male growthrates, while in other species the primary change involves differences in thetime or duration of growth between the sexes. These variations are illustrated with anthropoid genera such asMiopithecus, Cercopithecus, Erythrocebus, Macaca, Papio, Pan, andGorilla. It is suggested that additional ontogenetic investigations of other anthropoids will help clarify some of the socioecological bases of this variation in the ways of attaining an adult dimorphic state. This will contribute to our understanding of the complex factors underlying and producing sexual dimorphism in primates and other mammals.  相似文献   

5.
Sexual size dimorphism and male combat in snakes   总被引:2,自引:0,他引:2  
Richard Shine 《Oecologia》1978,33(3):269-277
Summary This paper reviews published literature on snakes to test the hypothesis that large male size, relative to female size, evolves because of the advantage it confers in male combat. Analysis of the data reveals a high correlation between the occurrence of male combat, and sexual dimorphism in which the male is the larger sex. This correlation holds (i) within the total sample of snake species (n=224), (ii) within the family Colubridae (n=134), and (iii) in a comparison between the eight families of snakes for which data are available. These results strongly support the hypothesis that large male size is an adaptation to intrasexual competition. The analysis also shows that females are larger than males in about 66% of snake species, that male combat is known in only about 15% of species, and that both sexual size dimorphism and the incidence of male combat tend to be distributed along taxonomic lines.  相似文献   

6.
Sexual size dimorphism within species increases with body size in insects   总被引:3,自引:0,他引:3  
Tiit Teder  Toomas Tammaru 《Oikos》2005,108(2):321-334
Studies examining interspecific differences in sexual size dimorphism (SSD) typically assume that the degree of sexual differences in body size is invariable within species. This work was conducted to assess validity of this assumption. As a result of a systematic literature survey, datasets for 158 insect species were retrieved. Each dataset contained adult or pupal weights of males and females for two or more different subsets, typically originating from different conditions during immature development. For each species, an analysis was conducted to examine dependence of SSD on body size, the latter variable being used as a proxy of environmental quality. A considerable variation in SSD was revealed at the intraspecific level in insects. The results suggest that environmental conditions may strongly affect the degree, though not the direction of SSD within species. In most species, female size appeared to be more sensitive to environmental conditions than male size: with conditions improving, there was a larger relative increase in female than male size. As a consequence, sexual differences in size were shown to increase with increasing body size in species with female-biased SSD (females were the larger sex in more than 80% of the species examined). The results were consistent across different insect orders and ecological subdivisions. Mechanisms leading to intraspecific variation in SSD are discussed. This study underlines the need to consider intraspecific variation in SSD in comparative studies.  相似文献   

7.
Researchers often relate anthropoid incisor size to diet and ingestive behaviors. It is suggested that primates that frequently consume large, tough foods (i.e., fruits) require large incisors to process these items. This idea has been difficult to test because of a lack of data on anterior tooth use in wild primates, and a lack of understanding concerning the relationships between food properties and ingestive behaviors. The first field study of primate ingestive behaviors has recently been completed for four species of Sumatran anthropoids: Hylobates lar, Macaca fascicularis, Pongo pygmaeus, and Presbytis thomasi [Ungar, American Journal of Physical Anthropology 95:197–219, 1994; International Journal of Primatology 16:221–245, 1995]. This paper documents both relative and absolute incisor row width differences among these taxa, and evaluates the relationships between incisor size and feeding behaviors for specific taxa. Results indicate that differences in incisor size among these species cannot all be explained by degree of frugivory, food item size, or even degree of incisor use in ingestion alone. It is therefore suggested that inferences of dietary differences based on largely or solely on differences in incisor sizes of specific fossil anthropoid taxa should be approached with caution. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Sexual size dimorphism and phylogeny in North American minnows   总被引:11,自引:0,他引:11  
Sexual size dimorphism (SSD) is predicted to vary across mating systems. A previous study examined a model of SSD in fishes as it relates to three mating system variables: probability of sperm competition, male territorial guarding, and male-male contest. I tested the ability of these variables to predict SSD in North American freshwater minnows, after controlling for phylogenetic effects by an independent contrasts method. Across 58 species only male territorial guarding was significandy related to SSD in a stepwise multiple regression. When tested for 26 genera and subgenera, both male territorial guarding and male-male contest were significant in the model. The concentrated-changes test revealed that character changes in SSD (from males the same size or smaller than females, to males larger than females) were more concentrated on branches with presence of male guarding (similar results were found for changes in SSD and presence of sperm competition), at the species and genus levels. Both comparative approaches demonstrated that male guarding and male-male contest variables are linked to SSD in minnows.  相似文献   

9.
10.
Measurements of the size of the nuclei of dioecious plants showed that the nuclei of male and female plants differ in agreement with the larger quantity of chromatin. The male. plants ofRumex acetosella andMelandrium album had larger nuclei, their Y chromosome being larger than the X chromosome, the same is true forRumex acetosa where the Y chromosome is smaller but there are two in the set.Ginkgo biloba had larger female nuclei because the Y chromosome was smaller than the X. The curves obtained by grouping all the nuclei of both sexes never had two peaks with regard to the small differences between the classes of maximum frequency.  相似文献   

11.
Sexual size dimorphism in species with asymptotic growth after maturity   总被引:2,自引:1,他引:2  
If animals mature at small sizes and then grow to larger asymptotic sizes, many factors can affect male and female size distributions. Standard growth equations can be used to study the processes affecting sexual size dimorphism in species with asymptotic growth after maturity. This paper first outlines the effects of sex differences in growth and maturation patterns on the direction and degree of sexual dimorphism. The next section considers the effects of variation in age structure or growth rates on adult body sizes and sexual size dimorphism. Field data from a crustacean, fish, lizard and mammal show how information on a species' growth and maturation patterns can be used to predict the relationships between male size, female size and sexual size dimorphism expected if a series of samples from the same population simply differed with respect to their ages or growth rates. The last section considers ecological or behavioural factors with different effects on the growth, maturation, survival or movement patterns of the two sexes. This study supports earlier suggestions that information on growth and maturation patterns may be useful, if not essential, for comparative studies of sexual size dimorphism in taxa with asymptotic growth after maturity.  相似文献   

12.
13.
Sexual dimorphism of body size and shell shape in European tortoises   总被引:1,自引:0,他引:1  
Adult body size and shape were examined in almost 1400 individuals of the tortoises Testudo graeca , T. hermanni and T. marginata from Greece. The size at maturity was greater in females than in males in all three species. Maximum and mean adult sizes were also greater in females than in males in T. graeca and T. hermanni . Males grew to a larger size than females in T. marginata , and mean adult size was similar in the sexes in this species. Sexual dimorphism of shape (adjusted for size covariate) was shown in most of the characters examined, and the degree of this dimorphism differed significantly among the three species. Differences were related to their contrasting courtship behaviours: horizontal head movements and severe biting in T. marginata , vertical head bobs and carapace butting in T. graeca , and mounting and tail thrusting in T. hermanni . There was no difference in the frequency of observations of courtship or fighting among the three species, but courtship was about 10 times more common than combat in males. All species showed greatest courtship activity in autumn; copulation was rarely observed in T. hermanni (only 0.36% of courting males) and not seen in the other species in the field. Observations made throughout the activity season indicated that feeding was equally common in males and females in all three species. Differences in shape were more likely to be the result of sexual selection than of natural selection for fecundity. Detailed predictions are made for sexual dimorphism of other characters in these species.  相似文献   

14.
Sexual dimorphisms – phenotypic dissimilarities between the sexes – are common and widespread among plants and animals, and classical examples include differences in body size, colour, shape, ornamentation and behaviour. In general, sexual dimorphisms are hypothesized to evolve by way of sexual selection acting on one sex through priority-of-access for sexual partners via mate choice and/or intra-sexual competition. In snakes, males are the mate-searching sex and one form of sexual selection involves male–male competition in locating females by following pheromone trails using their forked tongues, the structure used to sample environmental chemicals for transduction in the vomeronasal chemosensory system (VNS). Based on several lines of empirical evidence, increased tongue forking (bifurcation) in snakes (and some lizard taxa) appears to enhance chemical trail-following abilities through tropotaxis (the simultaneous comparison of stimulus intensities on two sides of the body) and thus aids in prey location and mate searching in males. We predicted that male copperheads, Agkistrodon contortrix , a North American pitviper, should have more deeply forked tongues than females owing to male–male competition for priority-of-access to widely dispersed females during the mating seasons. We examined formalin-fixed, ethanol-preserved museum specimens of adult A. contortrix for sexual size dimorphism (SSD) of the tongue. Tongue dimensions showed differences indicative of SSD, and the degree of bifurcation (i.e. mean tine length) was significantly greater in males. Various structures of the VNS and associated regions (e.g. muscles) in some vertebrate taxa show sexual dimorphism, but our study is the first to document dimorphism in the tongue of a tetrapod vertebrate.  相似文献   

15.
Few studies have conducted morphological analyses of crocodilians, and little information exists on differences between size-classes and sexes in Neotropical crocodilians. In this study, we measured nine morphological traits in 121 captive Morelet's crocodiles Crocodylus moreletii (81 females and 40 males). Our results revealed that individuals < 2 m total length do not exhibit sexual dimorphism in morphometric characteristics. However, for crocodiles over 2 m in length, males were significantly larger than females in terms of dorsal-cranial length, cranial width, snout width and snout-ventral length. In general, morphological traits demonstrated a strongly significant relationship with total length at the smaller size class of 150-200 cm length. However, in the highest size class of 250-300 cm length (large adult males), morphological traits were no longer significantly related with total length. Male crocodiles demonstrated allometric growth of cranial morphology with significantly greater increase in cranial width, snout width, and mid-snout width relative to total length at higher size classes. Morphological dimorphism and allometric growth may be associated with adaptive strategies for reproductive success.  相似文献   

16.
While several plant species are initially described as androdioecious, upon more thorough investigation, many of these are found to be cryptically dioecious with functionally male flowers and perfect flowers that produce inaperturate pollen or are otherwise functionally female on separate plants. The change in function of pollen produced by perfect flowers opens up the possibility for the evolution of sexual dimorphism in pollen grain size. We found that Thalictrum macrostylum (Ranunculaceae) is cryptically dioecious, and produces apparently inaperturate pollen in perfect flowers. In four field sites throughout North Carolina, inaperturate grains are larger than grains from staminate flowers and also show a greater variance in size. We also found substantial variation in pollen grain size among plants. The sites with lower soil nutrient content also had smaller pollen grains of both types, although local adaptation or genetic drift may also be causing among-site variation.  相似文献   

17.
18.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

19.
In 1950, Rensch first described that in groups of related species, sexual size dimorphism is more pronounced in larger species. This widespread and fundamental allometric relationship is now commonly referred to as 'Rensch's rule'. However, despite numerous recent studies, we still do not have a general explanation for this allometry. Here we report that patterns of allometry in over 5300 bird species demonstrate that Rensch's rule is driven by a correlated evolutionary change in females to directional sexual selection on males. First, in detailed multivariate analysis, the strength of sexual selection was, by far, the strongest predictor of allometry. This was found to be the case even after controlling for numerous potential confounding factors, such as overall size, degree of ornamentation, phylogenetic history and the range and degree of size dimorphism. Second, in groups where sexual selection is stronger in females, allometry consistently goes in the opposite direction to Rensch's rule. Taken together, these results provide the first clear solution to the long-standing evolutionary problem of allometry for sexual size dimorphism: sexual selection causes size dimorphism to correlate with species size.  相似文献   

20.
One of the more important sources of variability in primate species is sexual dimorphism. Most Primates heavier than five kilos bodyweight are sexually dimorphic, both in body size and in shape of certain hard tissues. Despite these facts, most of the fossil Primates from East African Miocene deposits were originally perceived as being monomorphic, a perception which has propogated through the literature. Re-examination ofProconsul from various sites in Western Kenya results in the view that it was as dimorphic in its splanchonocranium and in bodyweight as chimpanzees and gorillas. The clearest evidence comes from Rusing Island, where adequate samples are known of two morphs, traditionally identified as two species, but more likely to represent two sexes of a single species,P. nyanzae. Co-occurrence of the two morphs is 100% at the various Rusinga sites. Less complete samples have been collected from the Tinderet sites os Koru and Songhor, yet what is available shows that similar patterns of dimorphism characterise the speciesP. africanus andP. major, and that the co-occurrence of the two morphs in each species is 100%. The identification of fossils taking into consideration the role of sexual dimorphism clarifies many of the old debates in which individual specimens frequently shifted between different species, mainly on the basis of metric rather than morphologic evidence. Consequently, the distribution of the species ofProconsul is rather different after accounting for dimorphism, than it was before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号