首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new high-performance liquid chromatograhic procedure for simultaneous determination of pyrazinamide (PZA) and its three metabolites 5-hydroxypyrazinamide (5-OH-PZA), pyrazinoic acid (PA), and 5-hydroxypyrazinoic acid (5-OH-PA), in rat urine was developed. 5-OH-PZA and 5-OH-PA standards were obtained by enzymatic synthesis (xanthine oxidase) and checked by HPLC and GC–MS. Chromatographic separation was achieved in 0.01 M KH2PO4 (pH 5.2), circulating at 0.9 ml/min, on a C18 silica column, at 22°C. The limits of detection were 300 μg/l for PZA, 125 μg/l for PA, 90 μg/l for 5-OH-PZA and 70 μg/l for 5-OH-PA. Good linearity (r2>0.99) was observed within the calibration ranges studied: 0.375–7.50 mg/l for PZA, 0.416–3.33 mg/l for PA, 0.830–6.64 mg/l for 5-OH-PZA and 2.83–22.6 mg/l for 5-OHPA. Accuracy was always lower than ±10.8%. Precision was in the range 0.33–5.7%. The method will constitute a useful tool for studies on the influence of drug interactions in tuberculosis treatment.  相似文献   

2.
A method for the quantitation of theophylline (13DMX) and the three metabolites, 1-methyluric acid (1MU), 3-methylxanthine (3MX) and 1,3-dimethyluric acid (13DMU) in human plasma and urine has been developed. The method is based on a simple one-step liquid-liquid extraction with ethylacetate-2 propanol followed by isocratic, reversed-phase high-performance liquid chromatography with UV detection (detection wavelength: 273 nm). The overall mean recoveries ranged from 86 to 95% for the four compounds. The detection limit was 1 μm for 1MU, 3MX and 13DMU and 2 μM for 13DMX in urine, and 0.1 μM for 1MU, 3MX and 13DMU and 0.2 μM for 13DMX in plasma. The intra-day and inter-day coefficient of variation was <6% and <9%, respectively, and the accuracy was within ±10% in both urine and plasma.The simple but sensitive method is highly suitable for the development of theophylline as a probe drug for assessing CYP1A2 activity in man.  相似文献   

3.
A reversed-phase ion-pair high-performance liquid chromatographic method for the simultaneous determination of codeine and seven metabolites is described. The samples are purified by reversed-phase solid-phase extraction. Codeine, norcodeine, codeine-6-glucuronide, norcodeine-6-glucuronide and morphine-3-glucoronide are measured with UV detection. Detection limits are 3 nmol/l (morphine-3-glucuronide) to 20 nmol/l (codeine). Morphine, normorphine and morphine-6-glucuronide are measured with electrochemical detection. Detection limits are 0.4 nmol/l (morphine-6-glucuronide) to 1.0 nmol/l (normorphine). Correlation coefficients better than 0.998 are normally obtained for all compounds. The method was applied to the determination of the kinetics of codeine and its metabolites in plasma and urine samples from healthy volunteers.  相似文献   

4.
A method based on reversed-phase HPLC is reported for the separation and quantification of various urinary aromatic metabolites: hippuric, phenylaceturic, salicyluric, benzoic, phenylacetic, salicylic. 3-phenylpropionic and cinnamic acids and several phenols in ruminant urine. In this method, a Nova-Pak C18 (4 μm) 150×3.9 mm I.D. column, two solvents [A: 15°b methanol in 20 mM acetic acid (pH 3.3); B: methanol] in a gradient mode at a flow-rate of 0.8 ml/min, and UV detection at 210 nm were used. Quantification of the total (free and conjugated) benzoic, phenylacetic and salicylic acids present in urine was achieved by hydrolysis of the samples in 3 M HCl at 100°C for 24 h prior to HPLC analysis. The lowest detection concentration was 50 μmol/I. This method is useful for scanning the profile of aromatic metabolites in urine of ruminants, which provides information on the diets the animals receive.  相似文献   

5.
6.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed for the determination of amdinocillin (formerly mecillinam) in human plasma and urine. The assay is performed by direct injection of a plasma protein-free supernatant or a dilution of urine. A 10-μm μBondapak phenyl column with an eluting solvent of water—methanol—1 M phosphate buffer, pH 7 (70:30:0.5) was used, with UV detection of the effluent at 220 nm. Azidocillin potassium salt [potassium-6-(d-(-)-α-azidophenyacetamido)-penicillanate] was used as the internal standard and quantitation was based on peak height ratio of amdinocillin to that of the internal standard. The assay has a recovery of 74.4 ± 6.3% (S.D.) in the concentration ranges of 0.1–20 μg per 0.2 ml of plasma with a limit of detection equivalent to 0.5 μg/ml plasma. The urine assay was validated over a concentration range of 0.025–5 mg/ml of urine, and has a limit of detection of 0.025 mg/ml (25 μg/ml) using a 0.1-ml urine specimen per assay.The assay was applied to the determination of plasma and urine concentrations of amdinocillin following intravenous administration of a 10 mg/kg dose of amdinocillin to two human subjects. The HPLC and microbiological assays were shown to correlate well for these samples.  相似文献   

7.
8.
A rapid, sensitive and selective high-performance liquid chromatographic (HPLC) assay was developed for the determination of cibenzoline (Cipralan TM) in human plasma and urine. The assay involves the extraction of the compound into benzene from plasma or urine buffered to pH 11 and HPLC analysis of the residue dissolved in acetonitrile---phosphate buffer (0.015 mol/1, pH 6.0) (80:20). A 10-μ ion-exchange (sulfonate) column was used with acetonitrile—phosphate buffer (0.015 mol/1, pH 6.0) (80:20) as the mobile phase. UV detection at 214 nm was used for quantitation with the di-p-methyl analogue of cibenzoline as the internal standard.The recovery of cibenzoline in the assay ranged from 60 to 70% and was validated in human plasma and urine in the concentration range of 10–1000 ng/ml and 50–5000 ng/ml, respectively. A normal-phase HPLC assay was developed for the determination of the imidazole metabolite of cibenzoline. The assays were applied to the determination of plasma and urine concentrations of cibenzoline and trace amounts of its imidazole metabolite following oral administration of cibenzoline succinate to two human subjects.  相似文献   

9.
A rapid, reliable and specific reversed-phase high-performance liquid chromatographic procedure is described for the determination of diphenylpyraline hydrochloride at nanogram concentrations in plasma and urine. After extraction of the drug with n-pentane-2-propanol (50:1) from alkalinized samples, the organic extract was evaporated to dryness, reconstituted with methanol and chromatographed using a 5-μm Asahipak ODP-50 C18 column with UV detection at 254 nm. The elution time for diphenylpyraline was 7.9 min. The overall recovery of diphenylpyraline from spiked plasma and urine samples at concentrations ranging from 53 to 740 ng/ml were 94.65% and 92.29%, respectively. Linearity and precision data for plasma and urine standards after extraction were acceptable. The limit of detection was 15 ng/ml for both plasma and urine samples at 0.002 AUFS.  相似文献   

10.
11.
12.
A high-performance liquid chromatographic method for the determination of lansoprazole, a new proton-pump inhibitor, and five of its metabolites in human plasma is described. Lansoprazole, its metabolites, and internal standard (omeprazole) were extracted into diethyl ether-methylene chloride and separation was obtained using a reversed-phase column under isocratic conditions. The method features monochromatic ultraviolet detection at 285 nm, and single extraction, single evaporation sample handling. The lower limit of quantitation, based on standards with acceptable coefficients of variation, was 10 ng/ml for all compounds. No endogenous compounds were found to interfere. This method has been demonstrated to be suitable for pharmacokinetic studies in humans.  相似文献   

13.
Nicotine and its main metabolites (cotinine, trans-3'-hydroxycotinine, trans-3'-hydroxycotinine glucuronide, nicotine-1'-N-oxide and 3-pyridylcarbinol) were analysed in urine after liquid—liquid extraction by high-performance liquid chromatography using norephedrine as internal standard, ultraviolet detection at 260 nm and scanning ultraviolet spectra with a photodiode-array detector. The conjugated trans-3'-hydroxycotinine was determined after enzymatic hydrolysis. Specific determination of 3-pyridylcarbinol was also carried out. Owing to its good selectivity, sensitivity and reproducibility, the method was applied to the analysis of urine samples from smokers and non-smokers. The results obtained suggest that the urinary markers used to assess active smoking or exposure to environmental tobacco smoke must be not only nicotine and cotinine, but also their main free and conjugated metabolites.  相似文献   

14.
15.
We report a new HPLC procedure for measuring inulin in plasma and urine. Samples after dilution are boiled in mild acidic conditions and then analyzed on a C18 column. Solvent system A is 3.2 mM HCl, pH 2.5, and B is acetonitrile-3.2 mM HCl (60:40, v/v), pH 2.5. The separation is carried out in 8 min with a flow-rate of 1.0 ml/min and the absorbance monitored at 280 nm. The relationship between inulin and the recorded peak area is linear from 0.2 to 3.2 mg/ml with a correlation coefficient of 0.999 for plasma and 0.999 for urine. Within-run precision, measured at three inulin concentrations, ranged from 0.9 to 1.7% in plasma and from 0.8 to 1.2% in urine. Between-run precision varied in plasma from 2.7 to 3.2% and in urine from 3.0 to 3.3%. Analytical recovery ranged from 102 to 107% in plasma and from 101 to 105% in urine, respectively. The method is sensitive, selective and only 30-μl samples are required. Therefore, it could be used to evaluate the glomerular filtration rate even in small babies and to perform studies in animals.  相似文献   

16.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid—liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 μl of methanol—water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 μg/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

17.
An improved, rapid and specific high-performance liquid chromatographic assay was developed for the determination of famotidine in human plasma and urine. Plasma samples were alkalinized and the analyte and internal standard (cimetidine) extracted with water-saturated ethyl acetate. The extracts were reconstituted in mobile phase, and injected onto a C18 reversed-phase column; UV detection was set at 267 nm. Urine samples were diluted with nine volumes of a mobile phase-internal standard mixture prior to injection. The lower limits of quantification in plasma and urine were 75 ng/ml and 1.0 μg/ml, respectively; intra- and inter-day coefficients of variation were ≤10.5%. This method is currently being used to support renal function studies assessing the use of intravenously administered famotidine to characterize cationic tubular secretion in man.  相似文献   

18.
A procedure for the determination of tripamide and its hydroxylated metabolites in plasma, red blood cells and urine by reversed-phase high-performance liquid chromatography is described.The concentrations in red blood cells showed a monophasic decline and the half-life was 9.5 h. The concentration in red blood cells was markedly higher than that in plasma, showing that 95–98% of the drug is present in whole blood, after a dose of tripamide (90 mg) in man. The specificity and sensitivity of this procedure appear to be satisfactory for pharmacokinetic studies.  相似文献   

19.
Fast, reliable, specific and sensitive methods are reported to accurately quantitate unchanged propranolol in plasma, and its major metabolites in plasma and urine after enzymatic hydrolysis without the need for solvent extraction. These methods enable the analyst to process a large number of propranolol samples in one working day and should prove valuable to clinical laboratories demanding both speed and specificity in an assay.  相似文献   

20.
A reversed-phase high-performance liquid chromatographic method for the determination of sinefungin, a new antiprotozoal drug, in rat plasma has been developed and validated. Sample preparation was performed at 4°C by deproteinization with acetonitrile. Vidarabine was used as an internal standard. Both sinefungin and vidarabine were separated on a C18 column with a mobile phase of ammmonium dihydrogenphosphate-acetonitrile (95:5, v/v) and detected by ultraviolet absorbance at 260 nm. Recoveries of sinefungin from plasma were 75 ± 3.2% and 81 ± 4.8% following dosage at concentrations of 10 μg/ml and 30 μ/ml, respectively. Using 25- μl of rat plasma the limit of quantitation was 1 μg/ml sinefungin, and the assay was linear from 1 to 30 μg/ml. This method appears sensitive enough to be used in further pharmacokinetic studies of sinefungin in animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号