首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The endoparasitic fungus Hirsutella rhossiliensis and the nematode-trapping fungi Monacrosporium cionopagum and M. ellipsosporum were formulated as hyphae in alginate pellets. In a soil microcosm experiment, dried pellets of all three fungi decreased the invasion of cabbage seedlings by the root-knot nematode Meloidogyne javanica when juvenile nematodes were placed 2 cm from roots; M. cionopagum was more effective than the other two fungi, reducing nematode invasion by 40-95% with 0.24-0.94 pellets cm - 3 of soil. In a field microplot experiment, in which neither H. rhossiliensis nor M. ellipsosporum suppressed nematodes, 0.5 pellets of M. cionopagum cm - 3 of soil suppressed M. javanica invasion of tomato seedlings by 73%. In a second microplot experiment with only M. cionopagum , again at 0.5 pellets cm - 3 of soil, the fungus suppressed the invasion of tomato seedlings whether the pellets were added 0, 5 or 14 days before planting; the population density of M. cionopagum increased to nearly 3000 propagules g - 1 of soil by day 8 and then declined to less than 300 by day 22. Enchytraeid worms were observed in and around damaged and apparently destroyed pellets in both microplot experiments. Whether enchytraeids consumed the fungi or otherwise affected biological control requires additional research.  相似文献   

2.
The responses of second-stage juveniles (J2) of Meloidogyne incognita race 3 to calcium alginate pellets containing hyphae of the nematophagous fungi Monacrosporiura cionopagum, M. ellipsosporum, and Hirsutella rhossiliensis were examined using cylinders (38-mm-diam., 40 or 72 mm long) of sand (94% <250-μm particle size). Sand was wetted with a synthetic soil solution (10% moisture, 0.06 bar water potential). A layer of 10 or 20 pellets was placed 4 or 20 mm from one end of the cylinder. After 3, 5, or 13 days, J2 were put on both ends, on one end, or in the center; J2 were extracted from 8-ram-thick sections 1 or 2 days later. All three fungal pellets were repellent; pellets without fungi were not. Aqueous extracts of all pellets and of sand in which fungal pellets had been incubated were repellent, but acetone extracts redissolved in water were not. Injection of CO₂ (20 μl/minute) into the pellet layer attracted J2 and increased fungal-induced mortality. In vials containing four randomly positioned pellets and 17 cm³ of sand or loamy sand, the three fungi suppressed the invasion of cabbage roots by M. javanica J2. Counts of healthy and parasitized nematodes observed in roots or extracted from soil indicated that, in the vial assay, the failure of J2 to penetrate roots resulted primarily from parasitism rather than repulsion. Data were similar whether fungal inoculum consisted of pelletized hyphae or fungal-colonized Steinernema glaseri. Thus, the results indicate that nematode attractants and repellents can have major or negligible effects on the biological control efficacy of pelletized nematophagous fungi. Factors that might influence the importance of substances released by the pellets include the strength, geometry, and duration of gradients; pellet degradation by soil microflora; the nematode species involved; and attractants released by roots.  相似文献   

3.
The infection structures, trophism, and ecological character of nematophagous fungi are reviewed in this article on the basis of data extracted from the literature and the most recent experiments conducted in this area. Traditionally, nematophagous fungi are classified into four groups according to their modes of attacking nematodes: nematode-trapping fungi using adhesive or mechanical hyphal traps, endoparasitic fungi using their spores, eggparasitic fungi invading nematode eggs or females with their hyphal tips, and toxin-producing fungi immobilizing nematodes before invasion. In the present review, we focus on the first two groups. The living strategies of these nematophagous fungi depend on the diversity of their infection structures, such as different traps and spore types, which determine the modes of infecting nematodes. The diversity of trophic modes of nematophagous fungi is an important prerequisite for fungal survival and activity in soil. The abundance and activity of Hirsutella rhossiliensis and H. minnesotensis, representatives of endoparasites and potential biocontrol agents against nematodes, are highly dependent on environmental factors. Comprehensive understanding of the survival and activity of nematophagous fungi in soil is fundamental for the exploitation of these fungi as successful biocontrol agents.  相似文献   

4.
In a series of microcosm experiments with an arable, sandy loam soil amended with sugarbeet leaf, the short-term (8 weeks) dynamics of numbers of nematodes were measured in untreated soil and in γ-irradiated soil inoculated with either a field population of soil microorganisms and nematodes or a mixed population of laboratory-propagated bacterivorous nematode species. Sugarbeet leaf stimulated an increase in bacterivorous Rhabditidae, Cephalobidae, and a lab-cultivated Panagrolaimus sp. Differences were observed between the growth rates of the nematode population in untreated and γ-irradiated soils, which were caused by two nematophagous fungi, Arthrobotrys oligospora and Dactylaria sp. These fungi lowered the increase in nematode numbers due to the organic enrichment in the untreated soil. We estimated the annually produced bacterivous nematodes to consume 50 kg carbon and 10 kg nitrogen per ha, per year, in the upper, plowed 25 cm of arable soil.  相似文献   

5.
Research was conducted to determine whether pelletized hyphae ofHirsutella rhossiliensissuppressed invasion of roots by the sugarbeet cyst nematodeHeterodera schachtiiin field microplots. The loamy sand in the microplots was infested withH. schachtiibut not withH. rhossiliensis.Alginate pellets, with or without hyphae ofH. rhossiliensis,were mixed into soil removed from the microplots (1 pellet/cm3of soil). The soil was placed in cylinders positioned vertically in microplots; cylinders (6/microplot) were 10.1 cm wide and 15.3 cm deep and contained 1200 cm3of soil. Pellets and soil also were placed in soil observation chambers, which were buried in the cylinders or kept at 20°C in moisture chambers in the laboratory. After 12 days, cabbage seeds were planted in each cylinder, and after 10 days of growth, the seedlings were removed from the soil andH. schachtiiin the roots were counted. The number ofH. schachtiiin roots was large and was unaffected by addition ofH. rhossiliensis.In soil observation chambers,H. rhossiliensisgrew vigorously from the pellets in heat-treated soil but not in nonheated soil, and enchytraeids and collembolans were observed near damaged pellets. We suspect that organisms, possibly including enchytraeids and collembolans, fed upon or otherwise inhibitedH. rhossil- iensis.  相似文献   

6.
Nematophagous fungi are an important group of soil microorganisms that can suppress the populations of plant-parasitic nematodes. The pathogenic mechanisms of nematophagous fungi are diverse: They can be parasitical–mechanical through producing specialized capturing devices, or toxin-dependent. During infections, a variety of virulence factors may be involved against nematodes by nematophagous fungi. In this review, we present up-to-date information on the modes of infection by nematophagous fungi. The roles of extracellular hydrolytic enzymes and other virulence factors involved in infection against nematodes were summarized. The biochemical properties and peptide sequences of a special group of enzymes, the serine proteases, were compared, and their implications in infections were discussed. We also discussed the impact of emerging new techniques on our understanding of this unique group of fungi.  相似文献   

7.
Soil application of nematophagous fungi for the biological control of plant-parasitic nematodes often fails, and in many cases it has been difficult to reisolate the agent delivered to the soil. A reason for these results could be the inability of the fungi to proliferate in soil. We used a soil–membrane technique to study the capacity of several isolates of the nematophagous fungi Pochonia chlamydosporia and Paecilomyces lilacinus to grow and establish in sterilized and nonsterilized sandy soils from SE Spain and Western Australia. Growth of all fungi tested was inhibited in nonsterilized soil, although there was intraspecific variability in sensitivity among isolates of the same species. With respect to hyphal density, P. chlamydosporia isolate 5 (from Italy) was the least inhibited in nonsterilized soil from both sites. Relative growth analyses confirmed this result for soil from SE Spain, while with this method, P. chlamydosporia isolate 4624 (from Australia) appeared to be least inhibited in the Australian soil. The results indicate that a soil can be more receptive to its indigenous isolates than to nonindigenous isolates. Apparently, soil microbiota can determine the ability of nematophagous fungi to proliferate in soil.  相似文献   

8.
Cold tolerance and dehydration in Enchytraeidae from Svalbard   总被引:4,自引:1,他引:3  
When cooled in contact with moisture, eight species of arctic Enchytraeidae from Svalbard were killed by freezing within minutes or hours at −3 and −5 °C; an exception was Enchytraeus kincaidi which survived for up to 2 days. When the temperature approached 0 °C the enchytraeids apparently tried to escape from the moist soil. The supercooling capacity of the enchytraeids was relatively low, with mean supercooling points of −5 to −8 °C. In contrast, specimens of several species were extracted from soil cores that had been frozen in their intact state at −15 °C for up to 71 days. Compared to freezing in a moist environment, higher survival rates were obtained during cooling at freezing temperatures in dry soil. Survival was recorded in species kept at −3 °C for up to 35 days, and in some species kept at −6 °C for up to 17 days. Slow warming greatly increased survival rates at −6 °C . The results strongly suggest that arctic enchytraeids avoid freezing by dehydration at subzero temperatures. In agreement with this, weight losses of up to ca. 42% of fresh weight were recorded in Mesenchytraeus spp. and of up to 55% in Enchytraeus kincaidi at water vapour pressures above ice at −3 to −6 °C. All specimens survived dehydration under these conditions. Accepted: 12 December 1997  相似文献   

9.
Predacity, the ability of nematophagous fungi to destroy nematodes, was investigated for eight species of fungi by a method using sterilized soil and the nematodePanagrellus redivivus. In addition, the ability of the fungi to attract nematodes was investigated using an agar plate technique. Predacity and attraction were highly correlated (r=0.98) in these tests. The presence of traps in cultures ofArthrobotrys oligospora increased the ability to attract nematodes by a factor of 2.  相似文献   

10.
Food selection experiments demonstrated thatEnchytraeus crypticus (Oligochaeta, Enchytraeidae) was attracted byStreptomyces species and microscopic fungi in vermiculture substrates and in the gut content ofEisenia andrei earthworms. Consumption of spores and/or mycelia of attractive strains influenced markedly the proliferation ofE. crypticus. There was a 74-fold increase in the numbers of enchytraeids fed on the mixture ofAspergillus flavus andVerticillium tenerum mycelia or on mycelium of one strain ofStreptomyces in reproduction tests. Lower rates of increase ofE. crypticus (50-fold or less) were observed in variants whereV. tenerum or mixtures of fungi and streptomycetes were offered as food. We showed a potential importance of microbial populations in vermicultures and indicated that their regulation may provide a way to increase the productivity of such systems.  相似文献   

11.
Laboratory and microplot experiments were conducted to determine the influence of carrier and storage of Paecilomyces lilacinus on its survival and related protection of tomato against Meloidogyne incognita. Spores of P. lilacinus were prepared in five formulations: alginate pellets (pellets), diatomaceous earth granules (granules), wheat grain, soil, and soil plus chitin. Fungal viability was high in wheat and granules, intermediate in pellets, and low in soil and chitin-amended soil stored at 25 ± 2 C. In 1985 P. lilacinus in field microplots resulted in about a 25% increase in tomato yield and 25% gall suppression, compared with nematodes alone. Greatest suppression of egg development occurred in plots treated with P. lilacinus in pellets, wheat grain, and granules. In 1986 carryover protection of tomato against M. incognita resulted in about a threefold increase in tomato fruit yield and 25% suppression of gall development, compared with plants treated with nematodes alone. Higher numbers of fungus-infected egg masses occurred in plots treated with pellets (32%) than in those treated with chitin-amended soil (24%), wheat (16%), granules (12%), or soil (7%). Numbers of fungal colony-forming units per gram of soil in plots treated with pellets were 10-fold greater than initial levels estimated at planting time in 1986.  相似文献   

12.
The spatial variability of total soil nematodes and trophic groups in bare and fallow plots in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences was examined using geostatistics combined with classic statistics. Results showed that the soil pH value had a negative effect on plant-parasites in both bare and fallow plots; the mean number of total nematodes was significantly higher in fallow plots than in bare plots, which was 1485.3 and 464.0 individuals per 100 g dry soil in fallow and bare plots, respectively; the nugget (C 0)/sill (C 0+C) ratio of total nematodes, plant-parasites and bacterivores were lower in fallow plots (27.3%–45.6%) than in bare plots (49.5%–100%); the spatial distribution of total nematodes and trophic groups was found to be different between fallow and bare plots, which indicated that vegetation coverage had an effect on soil nematodes. __________ Translated from Chinese Journal of Applied Ecology, 2006, 17(2): 295–299 [译自: 应用生态学报]  相似文献   

13.
The influence of soil matric potential on nematode community composition and grazing associations were examined. Undisturbed cores (5 cm diameter, 10 cm depth) were collected in an old field dominated by perennial grasses on a Hinckley sandy loam at Peckham Farm near Kingston, Rhode Island. Ten pairs of cores were incubated at −3, −10, −20 and −50 kPa matric potential after saturation for 21–28 or 42–58 days. Nematodes were extracted using Cobb's decanting and sieving method followed by sucrose centrifugal-flotation and identified to family or genus. Collembola and enchytraeids present were also enumerated because they are grazers that reside in air-filled spaces. Direct counts of bacteria and fungi were made to estimate biovolume using fluorescein isothiocyanate and fluorescein diacetate stains, respectively. Trophic diversity and maturity indices were calculated for nematode communities. Three patterns of matric potential effect were observed for nematode taxa. One, there was a consistent effect of matric potential for all seasons for Alaimus, Monhysteridae, Prismatolaimus, Paraxonchium and Dorylaimoides. Two, some effects of matric potential were consistent among seasons and other effects were inconsistent for Aphelenchoides, Aphelenchus, Cephalobidae, Coomansus, Eudorylaimus, Huntaphelenchoides, Panagrolaimidae, Paraphelenchus, Sectonema, and Tripyla. Third, effects of matric potential were always inconsistent among seasons for Aphanolaimus, Aporcelaimellus, Bunonema, Rhabditidae, and Tylencholaimus. As predicted, fungal and bacterial biomass responded oppositely to matric potential. Total bacterial biomass was greater at −3 kPa than −10, −20 and −50 kPa (P=0.0095). Total fungal biomass was greater at −50, −20 and −10 kPa than −3 kPa (P=0.0095). Neither bacterial-feeding, fungal-feeding nor predacious nematodes correlated significantly with bacterial or fungal biomass. Omnivorous and predacious nematodes correlated positively with number of bacterial-feeding nematodes; predacious nematodes also correlated positively with fungal-feeding nematodes. Numbers of Collembola and enchytraeids were more often correlated positively with microbial-grazing nematode numbers in drier than moist soils. From this study, we propose two mechanisms that may explain nematode community structure changes with matric potential: differential anhydrobiosis and/or enclosure hypotheses. The later suggests that drying of soil generates pockets of moisture in aggregates that become isolated from one another enclosing nematodes and their food in relatively high concentrations creating patches of activity separated by larger areas of inactivity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The availability of most edible ectomycorrhizal mushrooms depends on their natural fructification. Sporocarp formation of these fungi is linked to habitat characteristics and climate conditions, but these data alone do not explain all the trends of fungal fruiting and dynamics. It could be hypothesized that the amount of soil mycelia could also be related to the production of carpophores. Soil samples (five cylinders of 250 cm3 per plot) were taken monthly, from September to November, in five fenced permanent plots (5 × 5 m) in Pinar Grande (Soria, Spain), a Pinus sylvestris stand situated in the north of the Sistema Ibérico mountain range. Plots were chosen to establish a gradient of Boletus edulis productivity from 0 to 38.5 kg/ha year, according to the mean fresh weight of sporocarps collected during the last 10 years. B. edulis ectomycorrhizal root tips were identified in each soil sample according to its morphology and counted. DNA extractions were performed with the PowerSoilTM DNA Isolation Kit and quantification of extraradical soil mycelium by real-time polymerase chain reaction using specific primers and a TaqMan? probe. The concentration of soil mycelium of B. edulis (mg mycelium/g soil) did not differ significantly between plots (p = 0.1397), and sampling time (p = 0.7643) within the fructification period. The number of mycorrhizal short roots per soil volume showed significant differences between the plots (p = 0.0050) and the three sampling times (p < 0.0001). No significant correlation between the number of mycorrhizas and the productivity of the plot (kg of B. edulis/ha year) was detected (p = 0.615). A statistically significant positive correlation (p = 0.0481) was detected between the concentration of mycelia of B. edulis in the soil samples and the presence of short roots mycorrhizal with B. edulis in these samples. The productivity of the plots, in terms of sporocarps produced during the last 10 years, was not correlated either with the concentration of soil mycelium or with the presence or abundance of ectomycorrhizas.  相似文献   

15.
In three field experiments, the rhabditid nematode Phasmarhabditis hermaphrodita was applied one or more times at the standard rate (3 × 109 ha?1) or half the standard rate to protect crops from slug damage under experimental conditions. Expt 1 was done in a field planted with the ornamental Polygonatum japonica. The treatments were: infective juveniles of the nematode at the standard field rate, metaldehyde pellets at the recommended field rate, and ioxynil (a herbicide with molluscicidal properties) at 90 mg m?2. The treatments were repeated every 2 wk. Arion ater agg. caused most of the damage to P. japonica. There were no significant differences in damage between treatments during the 3 wk after first application, but plants on plots treated with metaldehyde or nematodes had significantly less damage than plants on untreated plots in the fourth and fifth weeks. Expts 2 and 3 were done on the same site, the first with leaf beet and the second with lettuce. The treatments in these experiments were: nematodes applied to the planted area at the standard field rate 3 days prior to planting, with or without previous application of cow manure; nematodes at half standard rate applied twice, 6 days apart, to the planted area or to the surrounding area; metaldehyde pellets and iron phosphate pellets, both applied at the recommended rate to the planted area immediately after planting. In both experiments, the two chemical molluscicides and nematodes applied once to the planted area at the standard field rate without previous application of cow manure, or twice at half standard rate, were able to reduce slug damage. Nematodes applied after manure did not reduce slug damage. None of the treatments reduced the numbers of slugs contaminating the harvested plants. Slug populations were assessed by means of soil sampling before and after Expts 2 and 3. Only after Expt 3 was there a significant effect of treatment on slug numbers, with significantly fewer in metaldehyde treated plots than in untreated plots.  相似文献   

16.
In Florida, a root weevil pest of citrus, Diaprepes abbreviatus, is more damaging and attains higher population density in some orchards on fine textured, poorly drained “flatwoods” soils than in those on the deep, coarse sandy soils of the central ridge. Previous research revealed that sentinel weevil larvae were killed by indigenous entomopathogenic nematodes (EPNs) at significantly higher rates in an orchard on the central ridge, compared to one in the flatwoods. We hypothesized that filling tree planting holes in a flatwoods orchard with sandy soil from the central ridge would provide a more suitable habitat for EPNs, thereby reducing weevil numbers and root herbivory. Fifty trees were planted in oversized planting holes filled with coarse sand and 50 trees were planted in native soil in a split plot design where whole plots were species of introduced EPNs and split plots were soil type. Each of Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, or no EPNs were introduced into the rhizospheres in 10 plots of each soil type. During four years, EPN numbers in soil samples and the relative abundance of seven species of nematophagous fungi associated with nematodes were measured three times using real-time PCR. The efficacy of EPNs against sentinel weevil larvae was also measured three times by burying caged weevils in situ. EPN species richness (P = 0.001) and diversity (P = 0.01) were always higher in sand than native soil. Soil type had no effect on numbers of EPNs in samples, but EPNs were detected more frequently (P = 0.01) in plots of sandy soil than native soil in 2011. Two nematophagous fungi species, Paecilomyces lilacinus and Catenaria sp. were significantly more abundant in nematode samples from sandy soil on all three sampling dates. Efficacy of EPNs against weevil larvae was greater in sandy soil inoculated with S. diaprepesi (P = 0.03) in June 2010 and in all treatments in sandy soil in May 2011 (P = 0.03). Sixty-eight percent more adult weevils (P = 0.01) were trapped emerging from native soil during two years than from sandy soil. By May 2011, the cumulative number of weevils emerging from each plot was inversely related (P = 0.01) to the numbers of EPNs detected in plots and to EPN efficacy against sentinels. Three trees in sandy soil died as a result of root herbivory compared to 21 trees in native soil. Surviving trees in sandy soil had trunk diameters that were 60% larger (P = 0.001) and produced 85% more fruit (P = 0.001) than those in native soil. Although it is not possible to characterize all of the mechanisms by which the two soil treatments affected weevils and trees, substitution of sand for native soil was an effective means of conserving EPNs and shows promise as a cultural practice to manage D. abbreviatus in flatwoods citrus orchards with a history of weevil damage to trees.  相似文献   

17.
A study was conducted in order to compare soil faunal activity in four experimental farming systems using different tillage, chemical input and crop rotation practices: A conventional system with deep-ploughing (CT), an integrated system with reduced tillage and minimum chemical input (IN), a system with reduced tillage and high chemical input (RT) and a system with minimum tillage and high chemical input (MT). In nine experimental fields with two sampling points each, earthworms were sampled and biogenic structures were identified and counted in topsoil profiles (0–14 cm depth). Components of these profiles were identified by morphological features. Quantitative analyses of these morphological features provided information about soil compaction, earthworm and enchytraeid activity and distribution of roots and crop residues in the soil matrix. The dominant species in the earthworm community was the endogeic Aporrectodea rosea. Earthworm densities were unexpectedly lowest under reduced tillage (6 specimens per m2), and highest under deep-ploughing (67 specimen per m2), the reverse effect being observed with enchytraeid worms, as ascertained by deposition of their faecal pellets in topsoil profiles. Strong very fine granular structure (STVFGR) was most frequent in the integrated farming system (IN). We concluded that in the studied site embracing four farming systems, enchytraeids play an important role in creating a stable soil structure and porosity at the low level of earthworm densities found in the integrated system (IN). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The expectation that atmospheric warming will be most pronounced at higher latitudes means that Arctic and montane systems, with predominantly organic soils, will be particularly influenced by climate change. One group of soil fauna, the enchytraeids, is commonly the major soil faunal component in specific biomes, frequently exceeding above‐ground fauna in biomass terms. These organisms have a crucial role in carbon turnover in organic rich soils and seem particularly sensitive to temperature changes. In order to predict the impacts of climate change on this important group of soil organisms we reviewed data from 44 published papers using a combination of conventional statistical techniques and meta‐analysis. We focused on the effects of abiotic factors on total numbers of enchytraeids (a total of 611 observations) and, more specifically, concentrated on total numbers, vertical distribution and age groupings of the well‐studied species Cognettia sphagnetorum (228 observations). The results highlight the importance of climatic factors, together with vegetation and soil type in determining global enchytraeid distribution; in particular, cold and wet environments with mild summers are consistently linked to greater densities of enchytraeids. Based on the upper temperature distribution limits reported in the literature, and identified from our meta‐analyses, we also examined the probable future geographical limits of enchytraeid distribution in response to predicted global temperature changes using the HadCM3 model climate output for the period between 2010 and 2100. Based on the existing data we identify that a maximum mean annual temperature threshold of 16 °C could be a critical limit for present distribution of field populations, above which their presence would decline markedly, with certain key species, such as C. sphagnetorum, being totally lost from specific regions. We discuss the potential implications for carbon turnover in these organic soils where these organisms currently dominate and, consequently, their future role as C sink/source in response to climate change.  相似文献   

19.
 The production of certified garlic propagation material requires measures to be taken against pathogenic nematodes. Methyl bromide (MB) may be used for this purpose, but is known to cause stunting in Allium spp. Vesicular-arbuscular mycorrhizal (VAM) fungal inoculum was applied to the planting furrow after MB treatment. VAM-inoculated plants were larger, had more green leaves, an increased photosynthesis rate, especially at low light intensities, and higher fresh and dry weights than plants in uninoculated plots. The mean bulb weights from uninoculated and VAM-treated plots were 27 g and 51 g respectively. The native or an improved VAM population should be reintroduced after soil disinfection to ensure satisfactory garlic yields. Accepted: 15 January 1997  相似文献   

20.
Mammal grazing is composed of three mechanisms—removal of foliar tissue (defoliation), return of nutrients via dung and urine (fertilization), and trampling. To evaluate the relative role of these mechanisms in the effect of reindeer grazing on soil biota in northern grasslands, we subjected experimental plots in a sub-arctic alpine meadow to defoliation, fertilization (using NPK-solution), simulated trampling, and their factorial combinations once a year from 2002 to 2004 and measured the response of plants and decomposers (including microbes, nematodes, collembolans, and enchytraeids) in 2004. Trampling affected both plant and decomposer communities: the coverage of the moss Pleurozium schreberi and the sedge Carex vaginata, as well as the abundance of collembolans and enchytraeids were reduced in trampled plots. Trampling and fertilization also interacted significantly, with fertilization increasing the abundance of bacteria and bacterial-feeding and omnivorous nematodes in trampled plots only, and trampling decreasing fungal biomass in non-fertilized plots only. Defoliation had no overall effects on plants or decomposers. Nematode genera were not affected by the experimental treatments, but nematode and plant communities were significantly associated, and all decomposer biota, except collembolans, were strongly affected by the spatial heterogeneity of the study site. Our results indicate that trampling may have larger and defoliation and fertilization smaller roles than anticipated in explaining reindeer grazing effects in sub-arctic grasslands. However, even the effects of trampling seem to be outweighed by the spatial heterogeneity of decomposer abundances. This suggests that in sub-arctic grasslands spatial variation in abiotic factors can be a more important factor than grazing in controlling soil biota abundances. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions  LIS was involved in planning of the study, fieldwork, lab work, analysis, and wrote the article with contributions from all other authors; JM and MMK conceived the study and contributed to the data analyses; MMK further contributed to the field work and JM refined the final appearance of the text; JO started and was responsible for managing the field experiment, collecting the plant data and gave advice on statistical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号