首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gas-residence time distribution (RTD) response curves measured in a 23 m high pilot plant airlift tower loop reactor, which consisted of a riser, a special downcomer construction and at the top of the riser a large head. The measurements were evaluated by means of a deterministic dispersion model, which yielded the following particular parameters for the riser, downcomer and the head: Gas-Bo numbers, gas-mean residence times, gas holdups, liquid velocities, gas and liquid circulation times as well as a fraction of the large and small bubbles in a model medium (water) and during cultivation of baker's yeast.List of Symbols A cross section - Bo Bodenstein number - Bo d (= l d w G,d /D d ) - Bo h (= l h w G,h /D h ) - Bo r (= l r w G,r /D r ) - D longitudinal dispersion coefficient - E gas holdup - E(t) RTD-density function - L, l length parameter - q fraction of the gas throughput which is not recirculated (approximately equal to fraction of the large bubbles) - r fraction of the throughput which is recirculated (approximately equal to the fraction of the small bubbles) - t c circulation time - t cL liquid circulation time - t c,L * liquid circulation time calculated from the measured w Ld in the downcomer - V h hydrodynamical calculated gas-liquid volume - V d h (=V d+0.75/2 V k ) - V k h =(0.25V k ) - V r h = (V r+0.75/2 V k ) - V L liquid volume - V G dispersed gas volume - V G * gas throughput at the gas distributor (given in m3/h) under standard conditions, 1 bar and 25°C) - V G,d * gas throughput in downcomer (=V G * ) - V G,h * gas throughput in head (=V G * ) - V G,r * gas throughput in riser (V G * (1+) - w g gas velocity - w G,rel relative gas velocity with respect to the liquid velocity w L - w G,d gas velocity in the downcomer (=w G,rel –w Ld ) - w G,h gas velocity in the head (=w G,rel ) (since wLh = o) - w G,r gas velocity in the riser (=w G,rel +w Lr ) - w L liquid velocity - w L,d liquid velocity in the downcomer measured with mass flow meter - w sg ·w SL superficial gas and liquid velocities - first moment of the response curve - mean residence time Indices d downcomer - G gas phase - h head - L liquid phase - r riser - h hydrodynamic (upper position) Dedicated to the 65th birthday of Proffessor Fritz Wagner.The authors gratefully acknowledge the financial support by the Krupp Industrietechnik, Grevenbroich and the support of Pleser Co, Darmstadt. H. M. Rüffer thanks the Verband der Chemischen Industrie for a Fond der Chemie scholarship, and W. Liwei thanks the government of Lower Saxony for a graduate scholarship.  相似文献   

2.
Following a consideration of the prerequisites for reactor comparison and the fundamental differences between stirred tank and airlift tower loop reactors, their performances are compared for the production of secondary metabolites: penicillin V by Penicillium chrysogenum, cephalosporin C by Cephalosporium acremonium, and tetracycline by Streptomyces aureofaciens. In stirred tank reactors, cell mass concentrations, volumetric productivities, and specific power inputs are higher than in airlift tower loop reactors. In the latter, efficiencies of oxygen transfer are higher, and specific productivities with regard to power input, substrate and oxygen consumptions, and yield coefficients of product formation with regard to substrate and oxygen consumptions are considerably higher than in stirred tank reactors. The prerequisites for improved performance are discussed.  相似文献   

3.
4.
Average shear rates have been estimated experimentally in a 700-dm3 external loop airlift reactor. Aqueous pseudoplastic carboxymethylcellulose and xanthan gum solutions were used to simulate non-Newtonian behavior of biological media. Average shear rates of non-Newtonian solutions were found by analogy with Newtonian glycerol solutions using downcomer liquid velocity as the measurable parameter. Due to the complexity of local shear rate measurement, an average shear rate was assumed to exist and is proportional to superficial gas velocity. The data from this work and those in the literature were used in producing a new correlation for estimating average shear rates as a function of superficial gas velocity, geometry, and dispersion height. Wall shear rates were found to be significant. The ratio of wall shear rates to bulk shear rates were varied from 5% to 40%. Furthermore, it has been found that shear rates generated in airlift loop reactors are lower than those generated in bubble columns. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

5.
Summary Hybridoma cells were grown in serum-free media using different culture systems: stationary culture, spinner flask and a laboratory-scale airlift loop reactor. Influence of bovine serum albumin (BSA) on growth and product formation was only found in the airlift loop reactor.  相似文献   

6.
A distributed parameter model for simulation of SCP-production processes in tower reactors with an outer loop was developed by considering substrate, cell, and CO(2) balances in the liquid phase, and O(2) and CO(3) balances in the ges phase and taking into account variations of dissolved oxygen concentration, pressure, and k(L)a along the column, as well as double substrate Monod kinetics. This model was used to describe the cultivation of Hansenula polymorpha in a tower-loop reactor (height 275 cm, diameter 15 cm). Parameter identification and process simulation were carried out by a hybrid computer. The variation of identified mass transfer parameters with fermentation time and operation mode is considered employing ethanol and glucose substrate, respectively. Relationships among k(L)a, substrate concentration, and superficial gas velocity were developed to facilitate the layout and simulation of pilot-plant reactors.  相似文献   

7.
Dynamics of biofilm detachment in biofilm airlift suspension reactors   总被引:3,自引:0,他引:3  
The dynamic change in the overall detachment rate of spherical biofilms in a biofilm airlift suspension reactor was measured after a downshift of the substrate loading rate to zero while all other conditions remained constant. In contrast to the expectations, the overall detachment rate decreased rapidly to a nearly stable level. Correlations available from literature were not able to describe this phenomenon. Concepts were formulated which can describe the observations from this study. Research under dynamic conditions and careful monitoring of the biofilm surface area and biofilm morphology are necessary to elucidate and discriminate biofilm detachment mechanisms. (c) 1995 John Wiley & Sons, Inc.  相似文献   

8.
The liquid-impelled loop reactor is a new column-type bioreactor. The design of this device is based on the principle of the air-lift loop reactor. In the external-loop configuration used in this work, descending perfluorochemical drops bring about circulation of the continuous aqueous phase. Mixing of this continuous phase is characterized per section of the rector. Axial-dispersion coefficients for the tube with two-phase flow are determined and correlated with the energy dissipation in the tube. Comparisons with similar systems such as bubble columns and air-lift loop reactors are made. Overall mixing parameters are derived and used for calculation of the number of circulatins needed to achieve a certain degree of mixing. The hydrodynamic model from previous work is tested for the reactor configurations of this work. It can be useful to calculate circulation times.  相似文献   

9.
Citric acid fermentations using strain Aspergillus niger were carried out in three airlift reactors of volumes of 10, 35 and 200 liters. Mixing times were measured at the beginning and the end of fermentation. It has been shown that the mixing time at the end of fermentation is approximately equal to the duration of one circulation period. This was due to the flow regime transition caused by the change of rheological properties of the mould broth during fermentation.  相似文献   

10.
Summary Hansenula polymorpha was cultivated in a bubble column loop bioreactor employing ethanol and/or glucose as substrates. By varying the substrate concentration, the cultivations were carried out in non-limited, substrate limited and oxygen transfer limited growth ranges. The influence of the transitions from one range to another on reactor performance (OTR,k L a, a) and cell productivity () were investigated. When employing ethanol as a substrate, the concentration considerably influences the fluid dynamics, mass transfer phenomena and cell productivity. When employing glucose as a substrate, glucose repression occurs. At high glucose concentrations no transition into the oxygen transfer limited growth is possible. The ethanol produced during the glucose repression influences the fluid dynamics, mass transfer phenomena and productivity. With decreasing glucose concentration the glucose repression can be gradually eliminated.  相似文献   

11.
Summary The hydrodynamics and mass transfer behaviour of an airlift fermentor with an external loop (height 10m) has been investigated by measuring gas and liquid velocities, gas hold-up, liquid mixing and oxygen transfer coefficients. Liquid phase properties, i.e., ionic strength, viscosity and surface tension have been varied by altering the fermentation media. Results are compared with those from bubble column experiments performed in the same unit. It is shown, that more uniform two-phase flow in the airlift leads to advantages in scale-up and operation.Nomenclature a Specific interfacial area per volume of dispersion (m2/m3) - c Local concentration of tracer (kmol/m3) - c Concentration of tracer at infinite time (kmol/m3) - CL Concentration of oxygen in the liquid bulk (kmol/m3) - CL * Concentration of oxygen in the interface (kmol/m3) - Dax Axial dispersion coefficient (cm2/s) - I Ionic strength (kmol/m3) - i Inhomogeneity [defined in Eq. (2)] - Rate of oxygen transfer (kmol/s) - tc Circulation time (s) - tM Mixing time (s) - VR Volume of gas-liquid dispersion (m3) - VSG Superficial gas velocity in up-flow column (m/s) Greek letter symbols L Oxygen transfer coefficient (m/s) - Dynamic viscosity (m Pa s) - Surface tension (m N/m) Presented at the First European Congress on Biotechnology, Interlaken, September 25–29, 1978  相似文献   

12.
In three-phase internal loop airlift reactors, the detachment of biomass from suspended biofilm pellets in the presence of bare carrier particles was investigated under nongrowth conditions. The detachment rate was dominated by collisions between bare carrier particles and biofilm pellets. The concentration of bare carrier particles and the carrier roughness strongly influenced the detachment rate. A change in flow regime from bubbling to slug flow considerably increased the detachment rate. Otherwise, the superficial gas velocity did not directly affect the detachment rate. The influence of particle size was not clear. The bottom clearance did not affect the detachment rate within the tested range. Other aspects of reactor geometry might be important. The main detachment processes were abrasion and breakage of biofilm pellets. During the detachment process, two phases could be distinguished. In the first phase the detachment was relatively high, and both breakage and abrasion of biofilm pellets occurred. During the second phase, breakage dominated and the detachment rate was lower. The two-phase behavior is explained by differences in strength between the inner and outer biofilm layers, possibly caused by variations in local growth rates during biofilm formation. Differences in growth history might also explain the various detachment rates observed with different biofilm batches. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.  相似文献   

14.
The present study summarizes results of mixing characteristics in a draft tube airlift bioreactor using ERT. This technique offers the possibility for noninvasive and nonintrusive visualization of flow fields in the bioreactor and has rarely been utilized previously to analyze operating parameters and mixing characteristics in this type of bioreactors. Several operating parameters and geometric characteristics were examined. In general, results showed that the increase in superficial gas velocity corresponds to an increase in energy applied and thus, to a decrease in mixing time. This generally corresponded to an increase in liquid circulation velocity and shear rate values. Bottom clearances and draft tube diameters affected flow resistance and frictional losses. The influence of sparger configurations on mixing time and liquid circulation velocity was significant due to their effect on gas distribution. However, the effect of sparger configuration on shear rate was not significant, with 20% reduction in shear rates using the cross-shaped sparger. Fluid viscosity showed a marked influence on both mixing times and circulation velocity especially in the coalescing media of sugar and xanthan gum (XG) solutions. Results from this work will help to develop a clear pattern for operation and mixing that can help to improve several industrial processes, especially the ones related to emerging fields of technology such as the biotechnology industry.  相似文献   

15.
E. coli K12 with multicopy plasmid (lambda PR-promoter and temperature-sensitive lambda cI 857 repressor) was cultivated in 60-l bubble column and airlift tower loop reactors. The medium composition, cell concentration, and intracellulary enzyme activity were monitored on-line during batch, fed-batch, and continuous cultivations. The specific growth rates, cell mass yield coefficients, plasmid stabilities, productivities of the amount of active fusion protein (beta-galactosidase activity), concentrations and yields of acetic acid, and volumetric oxygen transfer coefficient were evaluated for different medium compositions and cultivation conditions. The enzyme activity was also monitored during the temperature induction. The results evaluated in the 60-l bubble column and airlift tower loop reactors are compared with those evaluated in a 1-1 stirred-tank reactor.  相似文献   

16.
A model for the steady state flow in jet loop reactors with two-phase flow has been developed. The model can be used to predict the critical effect in a reversed flow jet loop fermenter. The calculated critical effect according to the model corresponds well to experimental data.  相似文献   

17.
Summary Cephalosporin C was produced by Cephalosporium acremonium in a 60 l airlift loop reactor on complex medium (with 30 kg/m3 peanut flour) in fed-batch operation. A final product concentration of 5 kg/m3 and a maximum productivity of 45 g/m3 h were attained. On-line analysis was used to determine ammonia, methionine, phosphate, reducing sugar and cephalosporin C by an autoanalyser, glucose by a flow injection analyser and cephalosporin C, penicillin N, deacetoxycephalosporin C, deacetylce-phalosporin C and methionine by HPLC. The volumetric productivity of the stirred tank reactor was higher than that of the airlift reactor because of differences in cell concentration. Specific productivities in relative to cell mass were similar in the two reactors. The substrate yield coefficient in the airlift reactor was twice that in the stirred tank reactor.Nomenclature E o2 efficiency of oxygen transfer with regard to the specific power input - K La volumetric mass transfer coefficient - OTR oxygen transfer rate - P power input - PR volumetric productivity of CPC - q a volumetric aeration rate/broth volume (vvm) - SPR specific productivity with regard to RNA - V L broth volume in reactor - z relative height of the aerated reactor  相似文献   

18.
Summary Hansenula polymorpha was cultured for extended periods in an air lift tower loop reactor (15 cm in diameter with a 275 cm bubbling layer height) with ethanol and/or glucose as the substrates. At constant operation conditions variations of the following parameters were measured: the consumption of the substrate and oxygen, the production of CO2 and biomass, the longitudinal concentration profile of dissolved oxygen, the oxygen and substrate yield coefficients, the respiratory quotient and the specific interfacial area and volumetric mass transfer coefficient. The influence of the microorganisms on the oxygen transfer rate is discussed especially in the case of glucose repression.  相似文献   

19.
Gas bubbles entrapped in methanogenic granules subjected to hydrostatic pressure oscillations during recirculation in loop reactors will induce intraparticle liquid flows, and thereby enhance mass transfer in excess of diffusion. This breathing particle concept was clearly demonstrated in a well defined inorganic model system. The experimental results could be described satisfactory with a structured mathematical model, while a 30% improvement is predicted for methanogenic loop reactors as compared to constant pressure systems. It is concluded that acceleration of mass transfer in gas-producing systems offers challenging perspectives for both heterogeneous catalysis and biological fermentations.  相似文献   

20.
Measurements of local gas phase characteristics are obtained in an external-loop airlift reactor filled with newtonian or viscous non-newtonian liquids. A double-optical fiber probe technique is used. It allows the determination of the axial and radial profiles of gas hold-up, bubbling frequency, bubble size and velocity. In the case of air-water system, the results show a strong effect of radial liquid velocity variation on the gas flow characteristics at the bottom of the riser. In the case of highly viscous non-newtonian solution, the gas flow is strongly affected by the gas distribution just above the gas sparger. This study also points out the bubble coalescence and the break-up phenomena in different liquids and levels in the reactor. Furthermore, the local measurements of bubble size and velocity allows to gain more detailed information on the dynamics of the bubble-flow and shows a tendency of large bubbles to circulate in the column center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号