首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the hair of individuals with blood group AB, the level of blood group A glycosphingolipids is much lower than that of blood group B. We hypothesized that in hair, blood group A determinants are converted by alpha-N-acetylgalactosaminidase (alpha-NAGA, E.C.3.2.1.49) to H determinants. To address our hypothesis, the relative amount of ABH glycosphingolipids in hairs and nails of normal subjects, patients with Kanzaki disease, and heterozygous carriers of alpha-NAGA deficiency were analyzed by dot-blotting and enzyme-linked immunosorbent assay. In hair from normal subjects with blood group B, ABH glycosphingolipids consisted of 88% blood group B- and 12% blood group H glycosphingolipids. In blood group A subjects, 14% were group A- and 86% were group H glycosphingolipids. In Kanzaki patients, 81% were blood group A- and 19% were blood group H glycosphingolipids. In 2 alpha-NAGA deficiency carriers, the ABH glycosphingolipids consisted of 67% blood group A- and 33% blood group H glycosphingolipids. These results indicate that blood group A glycosphingolipids are catabolized to H glycosphingolipids by alpha-NAGA, resulting in lower levels of blood group A glycosphingolipids in the hair of normal subjects, and alpha-NAGA deficiency causes accumulation of blood group A glycosphingolipids in the hair of Kanzaki patients. This finding is of clinical relevance because it suggests that hair may be used to diagnose and assess the alpha-NAGA status of individuals.  相似文献   

2.
糖鞘脂是一类广泛分布在动物细胞膜表面的糖脂类物质,它在调控细胞识别、黏附、增殖以及凋亡等方面均有重要的生物学作用.本综述主要讨论了在现代分析技术范畴中,糖鞘脂的鉴定及其糖链结构的分离与解析方面的研究进展和糖鞘脂在癌症等疾病发生发展中所起的生物学功能,以及糖鞘脂作为疾病治疗靶标的可能性.随着现代仪器技术,尤其是质谱技术和色谱-质谱联用技术的发展,糖鞘脂的分离与检测也进入了高速发展的时代.目前,使用质谱技术在肝癌、结直肠癌、乳腺癌等恶性肿瘤的组织样本中均发现了不同种类糖鞘脂不同程度的异常表达.其中,岩藻糖基化的糖鞘脂上调表达在众多癌症糖鞘脂检测中尤为突出,故岩藻糖基化的糖鞘脂可能会成为一类癌症的早期诊断标志物.近年来,随着对糖鞘脂理解的不断深入,糖鞘脂在诸多疾病,如癌症血管生成过程中的功能研究成为了热点之一.例如,从肿瘤细胞表面脱落的大多数糖鞘脂在肿瘤微环境中主要起到了促进血管生成的作用,而与此相反的是,另一种结构简单的神经节苷脂GM3却起到了抑制血管生成的作用.本综述汇集了对上述现象在分子水平上的不同解读以及利用此现象对癌症靶向治疗的研究与探索,并对基于抑制糖鞘脂合成的靶向治疗的发展前景进行了分析展望.  相似文献   

3.
丝状真菌作为一类重要的微生物,被广泛应用于发酵食品、工业酶和次生代谢物等工业生产中。真菌鞘糖脂主要由鞘氨醇、脂肪酸链和特殊的极性基团组成,根据极性基团的不同,分为中性鞘糖脂和酸性鞘糖脂两大类。鞘糖脂不仅参与真菌生长、细胞分化、增殖、细胞凋亡、逆境胁迫等重要生理活动,中性鞘糖脂还可作为功能性医药用品、化妆品和保健食品的重要活性组分。本文论述了真菌鞘糖脂的主要种类、结构、生物合成途径和及其参与丝状真菌生长、分化和响应逆境胁迫的生物学功能;探讨了真菌中性鞘糖脂作为抗菌肽的靶点和酸性鞘糖脂在开发抗真菌药物中的应用;同时还综述了中性鞘糖脂作为化妆品的保湿成分或保健食品的功能成分,在改善皮肤屏障功能和预防特应性皮炎中的重要作用的相关研究进展,尤其是来源于曲霉的中性鞘糖脂,可显著增强皮肤屏障功能,并可作为益生元预防肠道损伤;另外还探讨了曲霉尤其是米曲霉作为开发中性鞘糖脂生物资源的优势。  相似文献   

4.
The removal of several glycosphingolipids from the circulation and their disposal in different tissue and fluid compartments was studied in adult rats. 3H-labeled dihydro analogs of several glycosphingolipids were injected intravenously and radioactivity was measured in arterial blood samples at subsequent time intervals, to obtain half life values for the labeled compound in the plasma. Half life values of less than 1 min were obtained for neutral glycosphingolipids whereas the half lives of labeled gangliosides were much longer and ranged from 3.8 to 21 h. The prompt removal of labeled neutral glycosphingolipids but not of the gangliosides indicates that sialic acid groups play a significant role in the retention of glycosphingolipids in the circulation. The results suggest that neutral glycosphingolipids are rapidly exchanged with their counterparts in a large extraplasma pool and that a major portion of this exchange could occur between plasma and liver. The detection of only a minute fraction of the injected glycosphingolipids in the cerebrospinal fluid indicates that a blood-cerebrospinal fluid barrier exists for these compounds in the rat.  相似文献   

5.
Endoglycoceramidase is a glycohydrolase capable of hydrolysing the O-glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. However, no endoglycoceramidase reported so far can hydrolyse 6-gala series glycosphingolipids which possess the common structure R-Gal beta1-6Gal beta1-1'Cer. Recently, we found a novel endoglycoceramidase (endogalactosylceramidase, EGALC) which specifically hydrolyses 6-gala series glycosphingolipids. Here, we report that EGALC catalyses the hydrolysis as well as transglycosylation. An intact sugar chain of neogalatriaosylceramide (Gal beta1-6Gal beta1-6Gal beta1-1'Cer) was found to be transferred by EGALC to a primary hydroxyl group of various alkanols and non-ionic detergents such as Triton X-100 generating corresponding alkyl- and Triton-trigalactooligosaccharides. Furthermore, fluorescent 6-gala series glycosphingolipids were synthesized by transglycosylation in a reaction with EGALC using fluorescent ceramides as acceptors. Because of high efficiency and broad acceptor specificity, EGALC would facilitate the synthesis of fluorescent glycosphingolipids and neoglycoconjugates which contain 6-gala oligosaccharides.  相似文献   

6.
We have compared the domain forming properties of three neutral acyl chain defined glycosphingolipids differing in their head group structures. The aim of the study was to explore if glycosphingolipids and sterols exist in the same lateral domains in bilayer membranes and how the structure of the head group influences the capacity of the glycosphingolipids to colocalize with cholesterol. The glycosphingolipids used in the study were galactosyl-, glucosyl- and lactosylceramides with a palmitic acid in the N-linked position. Domain formation in mixed bilayer vesicles was examined using fluorescent reporter molecules associating with ordered domains, together with a fluorescence quencher lipid in the disordered membrane phase. Our results show that the glycosphingolipids studied were poor in forming sterol-enriched domains compared to palmitoyl-sphingomyelin as detected by cholestatrienol quenching. However, the tendency to associate with cholesterol was clearly dependent on the carbohydrate structure of the glycosphingolipids, also when two glycosphingolipids with different head groups were mixed in the bilayer. All palmitoylated glycosphingolipids associated with palmitoyl-sphingomyelin/cholesterol domains. Our results show that the head group structures of neutral glycosphingolipids markedly affect their domain forming properties in bilayers both with and without cholesterol. The most striking observation being that large differences in domain forming properties were seen even between glucosylceramide and galactosylceramide, which differ only in the stereochemistry of one hydroxyl group in the carbohydrate head group.  相似文献   

7.
We have compared the domain forming properties of three neutral acyl chain defined glycosphingolipids differing in their head group structures. The aim of the study was to explore if glycosphingolipids and sterols exist in the same lateral domains in bilayer membranes and how the structure of the head group influences the capacity of the glycosphingolipids to colocalize with cholesterol. The glycosphingolipids used in the study were galactosyl-, glucosyl- and lactosylceramides with a palmitic acid in the N-linked position. Domain formation in mixed bilayer vesicles was examined using fluorescent reporter molecules associating with ordered domains, together with a fluorescence quencher lipid in the disordered membrane phase. Our results show that the glycosphingolipids studied were poor in forming sterol-enriched domains compared to palmitoyl-sphingomyelin as detected by cholestatrienol quenching. However, the tendency to associate with cholesterol was clearly dependent on the carbohydrate structure of the glycosphingolipids, also when two glycosphingolipids with different head groups were mixed in the bilayer. All palmitoylated glycosphingolipids associated with palmitoyl-sphingomyelin/cholesterol domains. Our results show that the head group structures of neutral glycosphingolipids markedly affect their domain forming properties in bilayers both with and without cholesterol. The most striking observation being that large differences in domain forming properties were seen even between glucosylceramide and galactosylceramide, which differ only in the stereochemistry of one hydroxyl group in the carbohydrate head group.  相似文献   

8.
Endoglycoceramidase catalyzes the hydrolysis of the linkage between oligosaccharides and ceramides of various glycosphingolipids. We found that a bacterial strain Corynebacterium sp., isolated from soil, produced endoglycoceramidase both intracellularly and extracellularly. The intracellular enzyme bound to the cell membrane was solubilized with 1% Triton X-100 and purified to homogeneity about 170-fold with 60% recovery. The molecular mass of the enzyme was approximately 65 kDa. The enzyme is most active at pH 5.5-6.5 and stable at pH 3.5-8.0. Various neutral and acidic glycosphingolipids were hydrolyzed by the enzyme in the presence of 0.1% Triton X-100. Ganglio- and lacto-type glycosphingolipids were readily hydrolyzed, but globo-type glycosphingolipids were hydrolyzed slowly.  相似文献   

9.
Studies have been carried out on the glycosphingolipids of human KB cells grown in monolayer and suspension culture, and by synchronization of the latter with a double thymidine (2mM) block. Glycosphingolipids were identified tentatively by thin layer chromatography, gas-liquid chromatography, and combined gas-liquid chromatography and mass spectrometry. The predominant gangliosides in the these cells were AcNeu-Gal-Glc-Cer and AcNeu-Gal-GalNAc-Gal-(AcNeu). Glc-Cer. Theprincipal neutral glycosphingolipids were Glc-Cer, Gal-Glc-Cer, Gal-Gal-Glc-Cer, and GalNAc-Gal-Gal-Glc-Cer. Incubation of KB cells (grown in monolayer and subsequently in suspension culture) for 48 hours with D-[1-14Clgalactose resulted in appreciable incorporation of radioactivity into all of the principal glycosphingolipids of these cells. These experiments confirmed that KB cells are capable of synthesizing their constituent glycosphingolipids. KB cells grown in suspension culture showed A 2- to 3-fold increase inthe concentration of Glc-Cer, Gal-Glc-Cer, GalNAc-Gal-Gal-Glc-Cer, and AcNeu-Gal1NAc-Gal-Gal-Glc-Cer, and AcNeu-Gal-Ga1NAcGal-(AcNeu)-Glc-Cer. Thus, the occurrence of tissue culture-dependent changes in the level of glycosphingolipids is demonstrated. Perhaps messages governing the synthesis of glycosphingolipids are translated earlier in thecell cycle under certain conditions of growth and are affected by cell-cell contact and cell adhesion.  相似文献   

10.
Many bacterial toxins utilize cell surface glycoconjugate receptors for attachment to target cells. In the present study the potential carbohydrate binding of Helicobacter pylori vacuolating cytotoxin VacA was investigated by binding to human gastric glycosphingolipids on thin-layer chromatograms. Thereby a distinct binding of the toxin to two compounds in the non-acid glycosphingolipid fraction was detected. The VacA-binding glycosphingolipids were isolated and characterized by mass spectrometry and proton NMR as galactosylceramide (Galbeta1Cer) and galabiosylceramide (Galalpha4Galbeta1Cer). Comparison of the binding preferences of the protein to reference glycosphingolipids from other sources showed an additional recognition of glucosylceramide (Glcbeta1Cer), lactosylceramide (Galbeta4Glcbeta1Cer) and globotriaosylceramide (Galalpha4Galbeta4Glcbeta1Cer). No binding to the glycosphingolipids recognized by the VacA holotoxin was obtained with a mutant toxin with deletion of the 37 kDa fragment of VacA (P58 molecule). Collectively our data show that the VacA cytotoxin is a glycosphingolipid binding protein, where the 37 kDa moiety is required for carbohydrate recognition. The ability to bind to short chain glycosphingolipids will position the toxin close to the cell membrane, which may facilitate toxin internalization.  相似文献   

11.
The glycosphingolipid composition of the human hepatoma cell line,Hep-G2   总被引:2,自引:0,他引:2  
The origin of plasma glycosphingolipids in normal individuals and the mechanisms by which tumor-associated glycosphingolipid antigens enter the plasma in patients with cancer are largely unknown. The Hep-G2 human hepatoma cell line retains many of the characteristics of differentiated hepatocytes including the ability to synthesize and secrete lipoproteins. Preliminary results indicated that newly synthesized Hep-G2 cell glycosphingolipids are coupled to the secreted lipoproteins. This suggests that this cell line may offer an interesting model for studying glycosphingolipid secretion, transfer, and shedding. We now report on the chemical and immunological characterization of Hep-G2 cell glycosphingolipids. Five major glycosphingolipids were purified and biochemically characterized: glycosylceramide, lactosyl ceramide, ceramide trihexoside, ganglioside GM3, and lactosyl sulfatide. Four additional minor components (3-fucosyl-lactosamine containing glycolipids, asialo GM2, galactosylgloboside, and ganglioside GM1) were identified using a combination of exoglycosidase digestion and immunostaining of thin-layer chromatography plates with specific carbohydrate binding proteins. This demonstrates that although this cell line synthesizes a limited number of major glycosphingolipids, it retains the ability to produce at least small amounts of structures in the lactoneo, globo, and ganglio series of glycosphingolipids. These studies show that it will be possible to investigate the mechanisms of secretion by Hep-G2 cells of different classes of these molecules such as neutral glycosphingolipids, gangliosides, and sulfatides.  相似文献   

12.
In order to help determine whether alterations of the profiles of glycosphingolipids occur consistently in human tumours, the neutral glycosphingolipids and gangliosides of nine lung tumours (one adenocarcinoma, four squamous cell, two mixed adeno-squamous cell, one large cell and one oat-cell carcinomata) were analysed. The control tissue consisted of adjacent lung; it contained neutral glycosphingolipids corresponding in properties to glucosyl-, lactosyl-, globotriaosyl- and globotetraosyl-ceramides. All of the tumours also contained these four neutral glycosphingolipids. However, in addition, five of the tumours (two of the squamous, the large cell and the two mixed adeno-squamous cell carcinomata) contained neutral glycosphingolipids corresponding in properties to lactotriaosyl- and neolactotetraosyl-ceramides; these same tumours also exhibited higher amounts of lactosylceramide than the other tumours analysed. Both of the two former neutral glycosphingolipids and very substantial amounts of the latter neutral glycosphingolipid were detected in pneumonic lung and in polymorphonuclear leucocytes; it thus appears possible that these particular compounds were derived from these latter cells rather than from the tumour cells. The ganglioside patterns of the tumours were almost equivalent in complexity to that exhibited by the control lung tissue. This study shows that the profiles of two major classes of glycosphingolipids (neutral glycosphingolipids and gangliosides) occurring in lung tumours are almost as complex as those of the parent tissue, a finding in contrast with the notably simplified patterns of these lipids found in many cancer cells grown in vitro. It also suggests that when lactotriaosyl- and neolactotetraosyl-ceramides and high amounts of lactosylceramide are detected in human tumours, the possibility must be considered that these compounds are derived from polymorphonuclear leucocytes.  相似文献   

13.
T cells may recognize a large variety of ligands with different chemical structures. Recently, glycosphingolipids have also been shown to stimulate human T lymphocytes. Recognition of glycosphingolipids is restricted by the nonpolymorphic CD1 molecules, expressed by professional antigen-presenting cells and by macrophages infiltrating inflammatory sites. CD1 molecules have a structure resembling that of classical MHC class I molecules, with the terminal extracellular domains characterized by two antiparallel a helices placed on two hydrophobic pockets. The glycosphingolipids bound to CD1 insert the lipid tails in the two pockets and position the hydrophilic head on the external part of CD1. The TCR interacts with aminoacids present in the two a helices and with residues provided by the carbohydrate moiety of glycosphingolipids and discriminates their structural variations. T cells recognizing self-glycosphingolipids release proinflammatory cytokines and may have a pathogenetic role in autoimmune diseases such as multiple sclerosis.  相似文献   

14.
In the normal C57BL/6J male mouse a specific subset of the kidney glycosphingolipids which is associated with multilamellar bodies of lysosomal origin and represents about 10% of the total kidney glycolipids, is excreted into the urine each day. This excretion is blocked and glycosphingolipids accumulate in the kidney of bg J/bgJ mutants of this strain. To examine this process in vitro, glycosphingolipid metabolism and excretion were studied in beige mouse kidney cell cultures. Primary kidney cell cultures from male C57BL/6J control and bg J/bg J beige mutants were grown in D-valine medium and glycosphingolipids labeled with [3H]palmitate. As we have shown previously, the giant lysosomes of altered morphology were maintained in cultures of the beige kidney cells. Beige-J and control cells synthesized the same types of glycosphingolipids, but the mutant cells had quantitatively higher levels of these compounds than control cells, as determined by high performance liquid chromatography. Beige-J cells incorporated more [3H]palmitate into glycospingholipids than control cells on a cpm/mg protein basis and the specific activity (cpm/pmole glycosphingolipid) was lower in beige cells. Medium from beige-J cells accumulated more glycosphingolipids than that from control cells in a 24 h period. The glycosphingolipids released into the medium as determined by HPLC were primarily non-lysosomal types and both control and mutant cells retained the glycosphingolipids associated with lysosomal multilamellar bodies excreted in vivo. The elevated levels of lysosomal glycosphingolipids and the dysmorphic lysosomes in primary cultures of beige cells, then, are not caused by a mutant block in secretion of lysosomes. (Mol Cell Biochem 118: 61–66, 1992)  相似文献   

15.
A sensitive immunochemical method was developed for the detection of glycosphingolipids on thin-layer chromatograms. The procedure involves oxidation of diol groups of glycosphingolipids with sodium periodate, derivatization of the formed aldehyde groups with digoxigenin-hydrazide, and reaction of the bound digoxigenin with an alkaline phosphatase-labeled polyclonal anti-digoxigenin antibody. The latter is detected by an insoluble indigo-like dye as a result of dephosphorylation of 5-bromo-4-chloro-3-indolyl phosphate. The detectability of all glycosphingolipid species was improved over that of the orcinol and resorcinol staining methods. Two nanograms of the standard gangliosides GM1, GD1A, and GT1 was detected, whereas the detection limit for short-chain neutral glycosphingolipids was in the range of 20-50 ng. Long-chain glycosphingolipids were detectable with a particularly high sensitivity. Selective staining of the gangliosides could be achieved by the use of low periodate concentrations.  相似文献   

16.
In higher eukaryotes, glucosylceramide is the simplest member and precursor of a fascinating class of membrane lipids, the glycosphingolipids. These lipids display an astounding variation in their carbohydrate head groups, suggesting that glycosphingolipids serve specialized functions in recognition processes. It is now realized that they are organized in signalling domains on the cell surface. They are of vital importance as, in their absence, embryonal development is inhibited at an early stage. Remarkably, individual cells can live without glycolipids, perhaps because their survival does not depend on glycosphingolipid-mediated signalling mechanisms. Still, these cells suffer from defects in intracellular membrane transport. Various membrane proteins do not reach their intracellular destination, and, indeed, some intracellular organelles do not properly differentiate to their mature stage. The fact that glycosphingolipids are required for cellular differentiation suggests that there are human diseases resulting from defects in glycosphingolipid synthesis. In addition, the same cellular differentiation processes may be affected by defects in the degradation of glycosphingolipids. At the cellular level, the pathology of glycosphingolipid storage diseases is not completely understood. Cell biological studies on the intracellular fate and function of glycosphingolipids may open new ways to understand and defeat not only lipid storage diseases, but perhaps other diseases that have not been connected to glycosphingolipids so far.  相似文献   

17.
We screened sera from patients with various neurological disorders for the presence of anti-neutral glycosphingolipids antibodies and only found them in sera from relapsing polychondritis with limbic encephalitis patients. Neutral glycosphingolipids are resident in membrane lipid rafts where high affinity nerve growth factor (NGF) receptor, Trk is co-localized. Therefore, we examined whether these antibodies influence the action of NGF in NGF-responsive cells. The results strongly suggest that these antibodies enhance NGF-induced Trk autophosphorylation and neurite outgrowth as well as neurofilament M expression. These data strongly indicate that these anti-neutral glycosphingolipids antibodies have a functional impact on NGF-Trk-mediated intracellular signal transduction pathway.  相似文献   

18.
The Drosophila genes, brainiac and egghead, encode glycosyltransferases predicted to act sequentially in early steps of glycosphingolipid biosynthesis, and both genes are required for development in Drosophila. egghead encodes a beta4-mannosyltransferase, and brainiac encodes a beta3-N-acetylglucosaminyltransferase predicted by in vitro analysis to control synthesis of the glycosphingolipid core structure, GlcNAcbeta1-3Manbeta1-4Glcbeta1-Cer, found widely in invertebrates but not vertebrates. In this report we present direct in vivo evidence for this hypothesis. egghead and brainiac mutants lack elongated glycosphingolipids and exhibit accumulation of the truncated precursor glycosphingolipids. Furthermore, we demonstrate that despite fundamental differences in the core structure of mammalian and Drosophila glycosphingolipids, the Drosophila egghead mutant can be rescued by introduction of the mammalian lactosylceramide glycosphingolipid biosynthetic pathway (Galbeta1-4Glcbeta1-Cer) using a human beta4-galactosyltransferase (beta4Gal-T6) transgene. Conversely, introduction of egghead in vertebrate cells (Chinese hamster ovary) resulted in near complete blockage of biosynthesis of glycosphingolipids and accumulation of Manbeta1-4Glcbeta1-Cer. The study demonstrates that glycosphingolipids are essential for development of complex organisms and suggests that the function of the Drosophila glycosphingolipids in development does not depend on the core structure.  相似文献   

19.
Although glycosphingolipids are ubiquitously expressed and essential for multicellular organisms, surprisingly little is known about their intracellular functions. To explore the role of glycosphingolipids in membrane transport, we used the glycosphingolipid-deficient GM95 mouse melanoma cell line. We found that GM95 cells do not make melanin pigment because tyrosinase, the first and rate-limiting enzyme in melanin synthesis, was not targeted to melanosomes but accumulated in the Golgi complex. However, tyrosinase-related protein 1 still reached melanosomal structures via the plasma membrane instead of the direct pathway from the Golgi. Delivery of lysosomal enzymes from the Golgi complex to endosomes was normal, suggesting that this pathway is not affected by the absence of glycosphingolipids. Loss of pigmentation was due to tyrosinase mislocalization, since transfection of tyrosinase with an extended transmembrane domain, which bypassed the transport block, restored pigmentation. Transfection of ceramide glucosyltransferase or addition of glucosylsphingosine restored tyrosinase transport and pigmentation. We conclude that protein transport from Golgi to melanosomes via the direct pathway requires glycosphingolipids.  相似文献   

20.
The most widely used methods for the extraction of glycosphingolipids from animal tissues are based on the use of chloroform/methanol mixtures. These methods, although suitable for a great majority of lipids, fail to remove highly complex glycosphingolipids. Reported here is a method for the isolation of the entire population of glycosphingolipids by means of a gradual degradation of tissue components and enrichment in carbohydrate conjugates resistant to alkali and proteases. Fresh gastric mucosa was homogenized and treated with alkali (β-elimination) and RNAase and DNAase to decrease the viscosity of the homogenate, followed by pronase digestion. Each treatment was completed by exhausitive dialysis against distilled water. The resultant tissue digest was partitioned with chloroform/methanol (2 : 1) to remove simple glycosphingolipids. The aqueous portion of the system was adjusted to 1.0% with Zwittergent?-314 and solubilized for 24 h by mixing. Thus, prepared sample subjected to Bio-Gel P60 column chromatography afforded five fractions. Of these, three were free of protein and contained carbohydrates, fatty acids and sphingosine. Further fractionation on Bio-Gel P10 and P6 columns followed by thin-layer chromatography afforded homogeneous components with all the characteristics of highly complex glycosphingolipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号