首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Cystic fibrosis (CF) is a fatal inherited disease caused by the absence or dysfunction of the CF transmembrane conductance regulator (CFTR) Cl- channel. About 70% of CF patients are exocrine pancreatic insufficient due to failure of the pancreatic ducts to secrete a HCO3- -rich fluid. Our aim in this study was to investigate the potential of a recombinant Sendai virus (SeV) vector to introduce normal CFTR into human CF pancreatic duct (CFPAC-1) cells, and to assess the effect of CFTR gene transfer on the key transporters involved in HCO3- transport. Using polarized cultures of homozygous F508del CFPAC-1 cells as a model for the human CF pancreatic ductal epithelium we showed that SeV was an efficient gene transfer agent when applied to the apical membrane. The presence of functional CFTR was confirmed using iodide efflux assay. CFTR expression had no effect on cell growth, monolayer integrity, and mRNA levels for key transporters in the duct cell (pNBC, AE2, NHE2, NHE3, DRA, and PAT-1), but did upregulate the activity of apical Cl-/HCO3- and Na+/H+ exchangers (NHEs). In CFTR-corrected cells, apical Cl-/HCO3- exchange activity was further enhanced by cAMP, a key feature exhibited by normal pancreatic duct cells. The cAMP stimulated Cl-/HCO3- exchange was inhibited by dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (H2-DIDS), but not by a specific CFTR inhibitor, CFTR(inh)-172. Our data show that SeV vector is a potential CFTR gene transfer agent for human pancreatic duct cells and that expression of CFTR in CF cells is associated with a restoration of Cl- and HCO3- transport at the apical membrane.  相似文献   

5.
Abnormal regulation of ion channels in cystic fibrosis epithelia.   总被引:9,自引:0,他引:9  
M J Welsh 《FASEB journal》1990,4(10):2718-2725
Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by defective electrolyte transport in several epithelia. In sweat duct, pancreatic, intestinal, and airway epithelia, abnormalities in transepithelial ion transport may account for the manifestations of the disease. A Cl- impermeable apical cell membrane is a common feature in these CF epithelia. The rate of transepithelial Cl- transport is controlled in part by hormonally regulated apical membrane Cl- channels; in CF epithelia, Cl- channels are present but their regulation is defective. Most regulation studies have focused on an outwardly rectifying Cl- channel, although other channels may be involved in Cl- secretion. Phosphorylation of Cl- channels or associated regulatory proteins by cAMP-dependent protein kinase or by protein kinase C (at a low internal [Ca2+]) in excised patches of membrane activates Cl- channels in normal cells but not in CF cells. Phosphorylation with protein kinase C at a high internal [Ca2+] in excised patches of membrane inactivates the channel; such inactivation is normal in CF cells. Cl- channels can also be activated by other maneuvers including an increase in the cytosolic [Ca2+], sustained membrane depolarization, an increase in temperature, proteolysis, and changes in osmolarity; the response to such maneuvers is not defective in CF. In addition to the Cl- channel abnormalities, Na+ absorption is increased in CF epithelia. It is not certain whether the increased rate of Na+ absorption results from an increase in the number of cation channels or an alteration of their kinetics. The relation of these ion channel abnormalities to the CF gene product is unknown, but an understanding of the function of the protein product and its defective function in CF should yield important new insights into the pathogenesis and potential therapy of this disease.  相似文献   

6.
Fan YH  Zhao LY  Zheng QS  Dong H  Wang HC  Yang XD 《Life sciences》2007,81(4):327-335
Previous studies have shown that arginine vasopressin (AVP) promotes myocardial fibrosis (MF), whereas nitric oxide (NO) inhibits MF. Cardiac fibroblasts (CFs) are the main target cells of MF. However, the modulatory effect of AVP on NO production in CFs and the role of this effect in MF are still unknown. In the present study, CFs obtained from Sprague-Dawley rats were stimulated with or without AVP and pyrrolidine dithiocarbamate (PDTC), a specific inhibitor of nuclear factor kappa-B (NF-kappaB). NO production and NOS activity were detected with absorption spectrometry, inducible nitric oxide synthase (iNOS) protein with Western blot analysis, iNOS mRNA with real-time PCR, CF collagen synthesis with [(3)H]proline incorporation, and NF-kappaB activation with immunofluorescence staining and Western blot analysis. The results showed that AVP increased NO production in a dose- and time-dependent manner, with maximal effects at 10(-7) mol/l after 24-h stimulation. AVP also increased NOS activity, protein and mRNA levels of iNOS in a coincident manner. Furthermore, AVP also increased CF collagen synthesis in a dose- and time-dependent manner. In addition, it was found that NF-kappaB was activated by AVP, and that PDTC could inhibit NO production, NOS activity, protein and mRNA levels of iNOS stimulated by AVP in a dose-dependent manner. The inhibitory effects of PDTC on NF-kappaB translocation were coincident with the effects of PDTC on iNOS-NO system activity. It is suggested that AVP increases NO production via the regulation of iNOS gene expression, and the upregulation of iNOS gene expression stimulated by AVP is mediated through NF-kappaB activation. NO production induced by AVP may counteract the profibrotic effects of AVP, thus the development of MF perhaps depends on the balance between profibrotic AVP and antifibrotic NO effects on MF.  相似文献   

7.
8.
9.
10.
We complemented the Cl- conductance defect in cystic fibrosis lymphocytes by transfection with wild-type cDNA for the cystic fibrosis transmembrane conductance regulator (CFTR). Stable transfectants were selected and subjected to molecular and functional analyses. We detected expression of endogenous CFTR mRNA in several CF and non-CF lymphoid cell lines by PCR. Expression from cDNA in the transfectants was demonstrated by amplifying vector-specific sequences. Both fluorescence and patch-clamp assays showed that transfectants expressing wild-type CFTR acquired properties previously associated with Cl- conductance (GCl) regulation in non-CF lymphocytes: (i) GCl was elevated in the G1 phase of the cell cycle, (ii) cells fixed at G1 increase GCl in response to increased cellular cAMP or Ca2+, (iii) agonist-induced increases in GCl were lost as the cells progressed to the S phase of the cell cycle. The cell cycle and agonist dependent regulation of GCl was not observed in CF lymphocytes transfected with CFTR cDNA containing stop codons in all reading frames at exon 6. Our findings indicate that lymphocytes express functional CFTR since wild-type CFTR corrects the defects in Cl- conductance regulation found in CF lymphocytes. Evaluation of the mechanism of this novel, CFTR-mediated regulation of GCl during cell cycling should provide further insights into the function of CFTR.  相似文献   

11.
The ion transport defects reported for human cystic fibrosis (CF) airways are reproduced in nasal epithelia of the CF mouse. Although this tissue has been studied in vivo using the nasal potential difference technique and as a native tissue mounted in the Ussing chamber, little information is available on cultured murine nasal epithelia. We have developed a polarized cell culture model of primary murine nasal epithelia in which the CF tissue exhibits not only a defect in cAMP-mediated Cl- secretion but also the Na+ hyperabsorption and upregulation of the Ca2+-activated Cl- conductance observed in human airways. Both the wild-type and CF cultures were constituted predominantly of undifferentiated cuboidal columnar cells, with most cultures exhibiting a small number of ciliated cells. Although no goblet cells were observed, RT-PCR demonstrated the expression of Muc5ac RNA after approximately 22 days in culture. The CF tissue exhibited an adherent layer of mucus similar to the mucus plaques reported in the distal airways of human CF patients. Furthermore, we found that treatment of CF preparations with a Na+ channel blocker for 7 days prevented formation of mucus adherent to epithelial surfaces. The cultured murine nasal epithelial preparation should be an excellent model tissue for gene transfer studies and pharmacological studies of Na+ channel blockers and mucolytic agents as well as for further characterization of CF ion transport defects. Culture of nasal epithelia from DeltaF508 mice will be particularly useful in testing drugs that allow DeltaF508 CFTR to traffic to the membrane.  相似文献   

12.
C M Liedtke 《FASEB journal》1992,6(12):3076-3084
The epithelium of pulmonary segments from trachea to aveoli actively transports electrolytes and allows osmotic movement of water to maintain the ionic environment in the airway lumen. Models of airway absorption and secretion depict the operation of transporters localized to apical or basolateral membrane. In many epithelia, a variety of electrolyte transporters operate in different combinations to produce absorption or secretion. This also applies to pulmonary epithelium of the large airways (trachea, main-stem bronchi), bronchioles, and alveoli. Na+ absorption occurs in all three pulmonary segments but by different transporters: apical Na+ channels in large airways and bronchioles; Na+/H+ exchange and Na+ channels in adult alveoli. The Na+ channels in each pulmonary segment share a sensitivity to amiloride, a potent inhibitory of epithelial Na+ channels. Fetal alveoli display spontaneous Cl- secretion, as do the large airways of some mammals, such as dog and bovine trachea. Cl- channels differ in conductance properties and in regulation by intracellular second messengers, osmolarity, and voltage mediate stimulated Cl- secretion. Electroneutral carriers, such as NaCl(K) cotransport, Cl-/HCO3- exchange, and Na+/HCO3- exchange, operate in large airways and alveoli during absorption and secretion. Abnormal ion transport in airways of cystic fibrosis (CF) patients is manifest as a reduced Cl- conductance and increased Na+ conductance. Isolation of the CF gene and identification of its product CFTR now allow investigations into the basic defect. Intrinsic to these investigations is the development of systems to study the function of CFTR and its relation to electrolyte transporters and their regulation.  相似文献   

13.
Cultured airway epithelial cells are widely used in cystic fibrosis (CF) research as in vitro models that mimic the in vivo manifestations of the disease and help to define a specific cellular phenotype. Recently, a number of in vitro studies have used an airway adenocarcinoma cell line, Calu-3 that expresses submucosal gland cell features and significant levels of the wild-type CFTR mRNA and protein. We further characterized previously described CF tracheobronchial gland cell lines, CFSMEo- and 6CFSMEo- and determined that these cell lines are compound heterozygotes for the F508del and Q2X mutations, produce vestigial amounts of CFTR mRNA, and do not express detectable CFTR protein. Electrophysiologically, both cell lines are characteristically CF in that they lack cAMP-induced Cl- currents. In this study the cell lines are evaluated in the context of their role as the CF correlate to the Calu-3 cells. Together these cell systems provide defined culture systems to study the biology and pathology of CF. These airway epithelial cell lines may also be a useful negative protein control for numerous studies involving gene therapy by cDNA complementation or gene targeting.  相似文献   

14.
15.
The gene defective in cystic fibrosis has recently been shown to code for a membrane protein designated the "cystic fibrosis transmembrane conductance regulator" (CFTR) protein. While it has been shown that detectable levels of the mRNA for the normal CFTR protein are present in epithelial cells from different tissues, factors which regulate CFTR expression have not been identified. A clonal cell line originating from a human colon adenocarcinoma (HT29-18) differentiates to multiple epithelial cell types when deprived of glucose in the culture medium. In these studies, mRNA isolated from these cells was examined by hybridization to a 1.45-kilobase cDNA probe which encodes transmembrane portions of the CFTR protein between exons 13 and 19. Cellular differentiation of HT29-18 causes a 9-18-fold increase in CFTR mRNA abundance versus the mRNA for the structural proteins actin and tubulin. Cellular differentiation also causes a 5-fold increase in second messenger-regulated Cl- transport which is sensitive to a Cl- channel blocker (diphenylamine 2-carboxylate). Subclones of HT29-18 which are committed to differentiate to either a mucin-secreting (HT29-18-N2) or an "enterocyte-like" (HT29-18-C1) phenotype have also been examined. In both subclones, elevated levels of CFTR mRNA are observed when compared with undifferentiated HT29-18 cells. However, during cellular differentiation, the regulation of CFTR mRNA abundance and membrane enzyme expression by the subclones is different from HT29-18. The results show that elevated CFTR mRNA occurs in multiple differentiated intestinal epithelial cell types, despite a phenotype-specific regulation of membrane protein expression. This suggests that CFTR expression plays a role in the differentiated functions of multiple epithelial phenotypes and that both cellular differentiation and cellular phenotypes are factors which regulate CFTR expression.  相似文献   

16.
17.
Cystic fibrosis (CF), an inherited disease characterized by defective epithelial Cl- transport, damages lungs via chronic inflammation and oxidative stress. Glutathione, a major antioxidant in the epithelial lung lining fluid, is decreased in the apical fluid of CF airway epithelia due to reduced glutathione efflux (Gao L, Kim KJ, Yankaskas JR, and Forman HJ. Am J Physiol Lung Cell Mol Physiol 277: L113-L118, 1999). The present study examined the question of whether restoration of chloride transport would also restore glutathione secretion. We found that a Cl- channel-forming peptide (N-K4-M2GlyR) and a K+ channel activator (chlorzoxazone) increased Cl- secretion, measured as bumetanide-sensitive short-circuit current, and glutathione efflux, measured by high-performance liquid chromatography, in a human CF airway epithelial cell line (CFT1). Addition of the peptide alone increased glutathione secretion (181 +/- 8% of the control value), whereas chlorzoxazone alone did not significantly affect glutathione efflux; however, chlorzoxazone potentiated the effect of the peptide on glutathione release (359 +/- 16% of the control value). These studies demonstrate that glutathione efflux is associated with apical chloride secretion, not with the CF transmembrane conductance regulator per se, and the defect of glutathione efflux in CF can be overcome pharmacologically.  相似文献   

18.
BACKGROUND: Cystic fibrosis (CF) is the most common, lethal autosomal recessive disease affecting children in the United States and Europe. Extensive work is being performed to develop both gene and drug therapies. The principal mutation causing CF is in the CFTR gene ([Delta F508]CFTR). This mutation causes the mutant protein to traffic poorly to the plasma membrane, and degrades CFTR chloride channel activity. CPX, a candidate drug for CF, binds to mutant CFTR and corrects the trafficking deficit. CPX also activates mutant CFTR chloride channel activity. CF airways are phenotypically inundated by inflammatory signals, primarily contributed by sustained secretion of the proinflammatory cytokine interleukin 8 (IL-8) from mutant CFTR airway epithelial cells. IL-8 production is controlled by genes from the TNF-alphaR/NFkappaB pathway, and it is possible that the CF phenotype is due to dysfunction of genes from this pathway. In addition, because drug therapy with CPX and gene therapy with CFTR have the same common endpoint of raising the levels of CFTR, we have hypothesized that either approach should have a common genomic endpoint. MATERIALS AND METHODS: To test this hypothesis, we studied IL-8 secretion and global gene expression in IB-3 CF lung epithelial cells. The cells were treated by either gene therapy with wild-type CFTR, or by pharmacotherapy with the CFTR-surrogate drug CPX. CF cells, treated with either CFTR or CPX, were also exposed to Pseudomonas aeruginosa, a common chronic pathogen in CF patients. cDNA microarrays were used to assess global gene expression under the different conditions. A novel bioinformatic algorithm (GENESAVER) was developed to identify genes whose expression paralleled secretion of IL-8. RESULTS: We report here that IB3 CF cells secrete massive levels of IL-8. However, both gene therapy with CFTR and drug therapy with CPX substantially suppress IL-8 secretion. Nonetheless, both gene and drug therapy allow the CF cells to respond with physiologic secretion of IL-8 when the cells are exposed to P. aeruginosa. Thus, neither CFTR nor CPX acts as a nonspecific suppressor of IL-8 secretion from CF cells. Consistently, pharmacogenomic analysis indicates that CF cells treated with CPX greatly resemble CF cells treated with CFTR by gene therapy. Additionally, the same result obtains in the presence of P. aeruginosa. Classical hierarchical cluster analysis, based on similarity of global gene expression, also supports this conclusion. The GENESAVER algorithm, using the IL-8 secretion level as a physiologic variable, identifies a subset of genes from the TNF-alphaR/NFkappaB pathway that is expressed in phase with IL-8 secretion from CF epithelial cells. Certain other genes, previously known to be positively associated with CF, also fall into this category. Identified genes known to code for known inhibitors are expressed inversely, out of phase with IL-8 secretion. CONCLUSIONS: Wild-type CFTR and CPX both suppress proinflammatory IL-8 secretion from CF epithelial cells. The mechanism, as defined by pharmacogenomic analysis, involves identified genes from the TNF-alphaR/NFkappaB pathway. The close relationship between IL-8 secretion and genes from the TNF-alphaR/NFkappaB pathway suggests that molecular or pharmaceutical targeting of these novel genes may have strategic use in the development of new therapies for CF. From the perspective of global gene expression, both gene and drug therapy have similar genomic consequences. This is the first example showing equivalence of gene and drug therapy in CF, and suggests that a gene therapy-defined endpoint may prove to be a powerful paradigm for CF drug discovery. Finally, because the GENESAVER algorithm is capable of isolating disease-relevant genes in a hypothesis-driven manner without recourse to any a priori knowledge about the system, this new algorithm may also prove useful in applications to other genetic diseases.  相似文献   

19.
20.
A key aspect of the lung's innate defense system is the ability of the superficial epithelium to regulate airway surface liquid (ASL) volume to maintain a 7-mum periciliary liquid layer (PCL), which is required for cilia to beat and produce mucus flow. The mechanisms whereby airway epithelia regulate ASL height to >or=7 microm are poorly understood. Using bumetanide as an inhibitor of Cl- secretion, and nystatin as an activator of Na+ absorption, we found that a coordinated "blending" of both Cl- secretion and Na+ absorption must occur to effect ASL volume homeostasis. We then investigated how ASL volume status is regulated by the underlying epithelia. Cilia were not critical to this process as (a) ASL volume was normal in cultures from patients with primary ciliary dyskinesia with immotile cilia, and (b) in normal cultures that had not yet undergone ciliogenesis. However, we found that maneuvers that mimic deposition of excess ASL onto the proximal airways, which occurs during mucociliary clearance and after glandular secretion, acutely stimulated Na+ absorption, suggesting that volume regulation was sensitive to changes in concentrations of soluble mediators in the ASL rather than alterations in ciliary beating. To investigate this hypothesis further, we added potential "soluble mediators" to the ASL. ASL volume regulation was sensitive to a channel-activating protein (CAP; trypsin) and a CAP inhibitor (aprotinin), which regulated Na+ absorption via changes in epithelial Na+ channel (ENaC) activity in both normal and cystic fibrosis cultures. ATP was also found to acutely regulate ASL volume by inducing secretion in normal and cystic fibrosis (CF) cultures, while its metabolite adenosine (ADO) evoked secretion in normal cultures but stimulated absorption in CF cultures. Interestingly, the amount of ASL/Cl- secretion elicited by ATP/ADO was influenced by the level of CAP-induced Na+ absorption, suggesting that there are important interactions between the soluble regulators which finely tune ASL volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号