首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Munda  Ivka M. 《Hydrobiologia》1990,(1):309-315
Suggestions for a small-scale exploitation of seaweeds in the northern Adriatic are given along with a survey of the fresh weight biomass and chemical composition of individual species. The intertidal is occupied by Fucus virsoides. In polluted sites, it is replaced by seasonal annuals. Cystoseira species are dominant in the upper subtidal and represent the major part of seaweed resources in this area. In polluted sites they are replaced by Halopteris scoparia and Dictyota dichotoma. Peaks in biomass were found in spring in the upper water layers and in early summer lower in the subtidal. The protein content of most species exhibited maxima in spring. Elevated values were found in plants from polluted and estuarine habitats.  相似文献   

2.
Morphometric relationships, caloric content and biochemical composition of Neomysis mercedis were determined for freshly caught mysids. Strong positive correlations between telson length, carapace length, dry weight, energy content and total length are described by the equations: Ln (Dry weight) = –5.02 + 2.57* Ln (Total Length), Telson Length = 0.13* Total Length, and Energy (Calories) = –37.13 + 4.85* Mean Total Length. Energy (4.92 cal mg–1 AFDFW), ash (8.61% dry weight) and total Kjeldahl nitrogen (10.6% dry weight) content are comparable to values reported for other species. A comparison of the length-weight relationship for N. mercedis with similar equations published previously for other mysid species indicated that the predicted mean dry weight at any particular length varied among species.  相似文献   

3.
中国北方草地普遍出现灌丛化现象,灌丛化改变植物群落结构、植物多样性和生产力,直接影响着草地生态保护与可持续利用.该研究以黄土高原灌丛化草地为研究对象,通过植被调查,分析比较不同坡向的灌丛斑块与禾草斑块植物群落结构(物种组成、优势种及物种多样性)和地上生物量的差异.结果发现:(1)灌丛化草地不同坡向对物种多样性及地上生物...  相似文献   

4.
Atmospheric CO2 enrichment usually changes the relative contributions of plant species to biomass production of grasslands, but the types of species favored and mechanisms by which change is mediated differ among ecosystems. We measured changes in the contributions of C3 perennial forbs and C4 grasses to aboveground biomass production of tallgrass prairie assemblages grown along a field CO2 gradient (250–500 μmol mol?1) in central Texas USA. Vegetation was grown on three soil types and irrigated each season with water equivalent to the growing season mean of precipitation for the area. We predicted that CO2 enrichment would increase the forb contribution to community production, and favor tall‐grasses over mid‐grasses by increasing soil water content and reducing the frequency with which soil water fell below a limitation threshold. CO2 enrichment favored forbs over grasses on only one of three soil types, a Mollisol. The grass fraction of production increased dramatically across the CO2 gradient on all soils. Contribution of the tall‐grass Sorghastrum nutans to production increased at elevated CO2 on the two most coarse‐textured of the soils studied, a clay Mollisol and sandy Alfisol. The CO2‐caused increase in Sorghastrum was accompanied by an offsetting decline in production of the mid‐grass Bouteloua curtipendula. Increased CO2 favored the tall‐grass over mid‐grass by increasing soil water content and apparently intensifying competition for light or other resources (Mollisol) or reducing the frequency with which soil water dipped below threshold levels (Alfisol). An increase in CO2 of 250 μmol mol?1 above the pre‐industrial level thus led to a shift in the relative production of established species that is similar in magnitude to differences observed between mid‐grass and tallgrass prairies along a precipitation gradient in the central USA. By reducing water limitation to plants, atmospheric CO2 enrichment may alter the composition and even structure of grassland vegetation.  相似文献   

5.
For lignocellulosic bioenergy to become a viable alternative to traditional energy production methods, rapid increases in conversion efficiency and biomass yield must be achieved. Increased productivity in bioenergy production can be achieved through concomitant gains in processing efficiency as well as genetic improvement of feedstock that have the potential for bioenergy production at an industrial scale. The purpose of this review is to explore the genetic and genomic resource landscape for the improvement of a specific bioenergy feedstock group, the C4 bioenergy grasses. First, bioenergy grass feedstock traits relevant to biochemical conversion are examined. Then we outline genetic resources available bioenergy grasses for mapping bioenergy traits to DNA markers and genes. This is followed by a discussion of genomic tools and how they can be applied to understanding bioenergy grass feedstock trait genetic mechanisms leading to further improvement opportunities.  相似文献   

6.
Recent models suggest that herbivores optimize nutrient intake by selecting patches of low to intermediate vegetation biomass. We assessed the application of this hypothesis to plains bison (Bison bison) in an experimental grassland managed with fire by estimating daily rates of nutrient intake in relation to grass biomass and by measuring patch selection in experimental watersheds in which grass biomass was manipulated by prescribed burning. Digestible crude protein content of grass declined linearly with increasing biomass, and the mean digestible protein content relative to grass biomass was greater in burned watersheds than watersheds not burned that spring (intercept; F1,251 = 50.57, P < 0.0001). Linking these values to published functional response parameters, ad libitum protein intake, and protein expenditure parameters, Fryxell's (Am. Nat., 1991, 138 , 478) model predicted that the daily rate of protein intake should be highest when bison feed in grasslands with 400–600 kg/ha. In burned grassland sites, where bison spend most of their time, availability of grass biomass ranged between 40 and 3650 kg/ha, bison selected foraging areas of roughly 690 kg/ha, close to the value for protein intake maximization predicted by the model. The seasonal net protein intake predicted for large grazers in this study suggest feeding in burned grassland can be more beneficial for nutrient uptake relative to unburned grassland as long as grass regrowth is possible. Foraging site selection for grass patches of low to intermediate biomass help explain patterns of uniform space use reported previously for large grazers in fire‐prone systems.  相似文献   

7.
Livestock grazing represents a major human disturbance to grasslands throughout the world. We evaluated the effects of long-term grazing (>20 years) on a dominant perennial grass species, Leymus chinensis (Trin.) Tzvel., in the semiarid grassland of Inner Mongolia, China, in terms of its morphological and functional responses. L. chinensis, one of the most abundant species in semiarid grassland, had significantly smaller leaf area, fewer vegetative tillers and shorter shoot internodes length, but significantly greater specific leaf area for the individuals in the grazing plot than those in the exclosure (grazing-free) plot. Long-term grazing also altered the relative distribution of biomass to leaves, roots and rhizomes. The biomass, coverage and the number of species were lower in the grazing plot by 50–70% in comparison with those in the grazing-free plot. In addition, the long-term grazing substantively decreased the physiological capacities of this grass species, including significantly lower net photosynthetic rate, apparent quantum efficiency, photochemical efficiency of PSII and water use efficiency. Significantly higher stable oxygen isotope ratios (δ 18O) of the soil water in the grazing plot than those in the grazing-free plot indicated a much higher soil evaporation in the grazing plot because of less litter coverage. Seasonal patterns in the δ 18O values of the stem water of L. chinensis and three other common species in the grazing and grazing-free plots indicated that plants in the grazing and grazing-free plots might shift their water sources differently from a dry month (June) to a wet month (August). This study illustrated the importance of using different approaches to study the possible responses of grass species in arid regions to human disturbances, such as long-term grazing.  相似文献   

8.
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350–1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land‐atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~?7.5 g C m?2 day?1 during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350–1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models.  相似文献   

9.
Root hydrocarbons as potential markers for determining species composition   总被引:1,自引:0,他引:1  
Grasslands can be a complex mixture of plant species. A method is described to allow the identification of both roots and shoots of five different grass species, thus permitting greater knowledge about whole plant allocation and competition in mixed pastures. The five species were Lolium perenne, Festuca ovina, Festuca rubra, Poa trivialis and Agrostis capillaris. N‐alkanes with odd‐numbers of carbon atoms in the chains predominate in plants and in the five grass species studied, concentrations of alkanes of chain length of C29, C31 and C33 were highest. Average concentrations of C27‐C33 alkanes in shoots and roots were 187 and 11 mg kg ? 1, respectively. This wide range of values required considerable modifications to the method of analysis, including expressing concentrations on an organic matter basis and scaling‐down the procedure. The n‐alkane concentrations in roots are different from those in shoots and therefore values from shoots cannot be used to predict the composition in roots. Using a canonical variate analysis, all five grass species could be separated using concentrations of C26, C31 and C33 values in the roots. The greatest difference occurred between A. capillaris and the others, whereas discrimination was least between the two Festuca species. Defoliation had contrasting effects on the concentration of a few n‐alkanes, but not in the n‐alkanes used to discriminate between grass species. Alkane analysis shows great potential as a method to quantify the species composition of the root biomass beneath mixed pasture species.  相似文献   

10.
Deproteinized sweet and sour cheese whey concentrates were investigated for their suitability as substrates for the production of single-cell protein with Kluyveromyces marxianus CBS 6556 up to a 100-l scale. An important factor for gaining high cell concentrations was the use of the Crabtree-negative strain K. marxianus CBS 6556. Supplements such as trace elements, ammonium and calcium were required for the complete conversion of sweet whey concentrates into biomass, whereas sour whey concentrates had to be supplemented with ammonium, trace elements and vitamins. After improvement, biomass dry concentrations of up to 50 g l−1 could be reached with Yx/s values of 0.52 for sweet whey and of up to 65 g l−1 with Yx/s values of 0.48 for sour whey concentrates. The chemical oxygen demand of the whey concentrates were reduced by 80%. The cells were used for the analysis of amino acid and ash composition, showing a distinct increase of eight out of ten essential amino acids compared to sweet and sour whey protein and exceeding the World Health Organisation guidelines for valine, leucine, isoleucine, threonine, phenylalanine and tyrosine.  相似文献   

11.
Summary As the macromolecular composition of microorganisms varies during their life cycle it was asked whether, and to what extent such changes exert any influence on substrate consumption, i.e. growth yield and carbon conversion efficiency, respectively. This question was dealt with in a theoretical study by use of the Y APT max -concept. The growth substrates considered were methanol, acetate and glucose; the latter was assumed to be assimilated via both the glycolytic and the oxidative hexosemonophosphate pathway. Five fictitious biomasses were used which were altered in their proportion of polysaccharides, proteins, lipids, RNA and DNA. As a result, only small variations in the individual biomass formulae were obtained. On the basis of the energy balances for the syntheses of all cell constituents it was found that variations in the macromolecular composition of microbial biomass have only a slight effect on carbon conversion efficiency, amounting to maximally 3%. From the material balances it could be calculated that the upper, solely metabolism-determined limit of carbon conversion efficiency is 85% for substrates assimilated glycolytically via phosphoglycerate; for gluconeogenetic substrates, the upper limit was 75%. These limits are essentially determined by carbon loss on the way to amino acid syntheses.Abbreviations Ac acetate - CCE carbon conversion efficiency (%) - EMP Embden-Meyerhof-Parnas (glycolytic) pathway - Gluc glucose - HMP oxidative hexosemonophosphate pathway - m e maintenance coefficient (mmol g-1 h-1) - MeOH methanol - PGA phosphoglycerate, Y, growth yield (g dry weight per g substrate) - Y ATP growth yield (g dry weight per mole ATP) - specific growth rate (h-1)  相似文献   

12.
《Fungal Ecology》2011,4(6):417-426
Chemical composition of litter has previously been reported to affect in situ decomposition. To identify its effects on a single species level, the saprotrophic basidiomycete Hypholoma fasciculare was grown on 11 types of litter with variable chemical composition (N content of 3.4–28.9 mg g−1), and the mass loss of litter and lignin, production of extracellular enzymes and fungal biomass were followed. After 12 weeks, mass loss ranged from 16 % to 34 %. During early decomposition stages, litter mass loss, fungal biomass production (estimated by ergosterol content) as well as fungal substrate use efficiency all increased with increasing initial N content of the litter. The initial litter decomposition rate was significantly positively correlated with the activities of arylsulfatase, cellobiohydrolase, endoxylanase and phosphatase. Contrary to expectations, the lignin content did not affect litter mass loss, when covariation with N content was accounted for. The ratio of lignin loss to total mass loss depended on the litter type and did not reflect the activities of ligninolytic enzymes.  相似文献   

13.
Organic fertilizers can improve soil health while providing nutrients for perennial grass growth for bioenergy feedstock, particularly under marginal soil conditions. The impact of organic fertilizer application on perennial grass composition needs clarification. Our objective was to evaluate feedstock composition, and N, P, and K dynamics of switchgrass (Panicum virgatum L.), tall fescue [Lolium arundinaceum (Schreb.)], and reed canarygrass (Phalaris arundinacea L.) provided with either inorganic or organic fertilizer sources. Grasses were established on a sandy soil and a clay soil at the Cornell University Willsboro Research Farm in Willsboro, NY. The experiment was a split-split plot randomization of a randomized block design with six replicates. Sites were whole plots, grass species were subplots, and fertility treatments were sub-subplots. Six treatments were (1) 168 kg ha?1 of N fertilizer for cool-season grasses; 84 kg ha?1 for switchgrass, (2) 56 kg ha?1 of 0-46-0 P fertilizer plus N (#1), (3) 112 kg ha?1 of 0-0-60 K fertilizer plus N (#1), (4) 89.6 Mg dairy manure ha?1, (5) 44.8 Mg dairy manure compost ha?1, and (6) a control without fertilizer. Organic fertilizers produced a net positive P and K balance, while other treatments had negative balances. Organic fertilizer treatments resulted in lower lignin and gross energy values, and higher total ash and Cl, compared to inorganic fertilizer treatments. Switchgrass biomass had higher fiber and gross energy, lower total ash, and much lower Cl content under organic fertilizer applications than cool-season grasses, making switchgrass a more desirable feedstock regardless of conversion process.  相似文献   

14.
Forage quality and patch choice by wapiti (Cervus elaphus)   总被引:1,自引:0,他引:1  
Recent models suggest that herbivores might optimize energygain by selecting patches of intermediate vegetation biomass.We tested this hypothesis in wapiti (Cervus elaphus) by estimatingdaily rates of energy gain in relation to grass biomass andby measuring patch choice in experimental pastures in whichgrass biomass was manipulated by mowing. The digestible energycontent of grasses declined with increasing biomass due to maturationalchanges in fiber and lignin content. Daily rates of dry matterintake by wapiti increased with grass biomass at a deceleratingrate, implying a Type II functional response. Linking thesevalues to published ad libitum energy intake and energy expenditureparameters, Fryxell's (1991) model predicted that the dailyrate of energy gain should be highest when wapiti feed in grasslandswith 1000–1100 kg/ha. In trials in which grass biomasswithin a mosaic of patches was manipulated experimentally between800–2900 kg/ha, wapiti preferred patches of 1200 kg/ha,close to the value predicted by the energy gain model. Our resultssuggest that the rate of energy gain by wapiti is constrainedby both grass biomass and grass fiber content, the latter ofwhich varies inversely with grass biomass. Behavioral preferencefor grass patches of intermediate biomass and fiber contentcould help explain patterns of aggregation and seasonal migrationreported previously for wapiti.  相似文献   

15.
In this study, we assessed the potential for bioenergy production of Low-Input High-Diversity (LIHD) systems in temperate West-European conservation areas. A wide range of seminatural ecosystems (wet and dry grasslands, marshes, tall-herb vegetation and heathlands) was sampled. Because LIHD biomass is often scattered and discontinuously available, we only considered the potential for anaerobic digestion and combustion. Both technologies are suitable for decentralized biomass utilization. The gross energy yield showed a promising range between 46–277  GJ per hectare per mowing cycle (MC). The energy efficiency of the anaerobic digestion process was rather low (10–30%) with a methane energy yield of 5.5–35.5 GJ ha−1 MC−1, experimentally determined by batch digestion tests. The water content, functional group composition and biochemical composition (hemicellulose, cellulose, lignin and Kjeldahl nitrogen) of the biomass were analyzed to assess the suitability of different valorization pathways. On the basis of the results, we were able to propose recommendations regarding the appropriate conversion techniques. Biomass from plant communities with ‘late’ harvest dates (August–October) or a high fraction of woody species like heathland and dune slacks, is best valorized through combustion, while herbaceous biomass of ‘early’ harvested grasslands (June–July) and tall-herb vegetation can better be digested. The main advantages of the production of bioenergy from LIHD biomass originating from conservation management are the minimization of the competition with food production and its potential to reconcile renewable energy policies and biodiversity goals.  相似文献   

16.
草地生物量是高寒草甸生态系统功能状态与生产效益的基础指标。然而,青藏高原冬半年非生育期,包括生物量在内的牧草要素观测全面中止,使得冬季成为牧草观测的一个空白期。通过2020年8月—2021年4月在青海海北高寒草地逐月牧草参数与高光谱野外同步观测试验,进行了牧草不同月份、不同衰减状态下生物量、表观状态、光谱特征的观测及其动态变化过程分析。结果表明,高寒冬季牧草生物量总体呈迅速下降和相对稳定两个阶段。8—10月牧草生物量处于迅速衰减下降阶段,牧草生物量由8月的9225 kg/hm2急剧下降至10月的3536 kg/hm2,降幅近160%,11月—次年4月则进入总体稳定阶段。利用衰减过程牧草生物量与反射光谱间关系,提出了一种修订的归一化枯草植被指数(R-DGVI),该指数在低覆盖与高覆盖植被区均表现出较好的枯草识别能力,具有相比NDVI更强的枯草识别能力与更宽的阈值范围。在此基础上,建立的中分辨率成像光谱仪(MODIS)卫星冬季枯草生物量遥感估算模型R2达到0.5627(P<0.01),进一步,通过给出5个等级枯草生物量...  相似文献   

17.
J. L. Berthon 《Hydrobiologia》1985,123(3):223-231
In Lake Dayet er Roumi, the annual cycle of Acanthocyclops vernalis (Copepoda) is composed of two different cohorts, the first one in autumn, the other, numerically the most important, in spring.Growth rates and size of the individuals are nearly equivalent in the two cohorts, but their chemical composition changes appreciably. Autumn animals have a higher energetic content than spring ones: 2.425 104 Nm · g–1 and 1.965 104 Nm · g–1, respectively. The result is a great difference in biomass and production value between the two populations.Because of the difference in population density, the autumn cohort produces much less than the spring one. However, because each autumn specimen has a higher energy content, this difference becomes much smaller, on balance.The difference in numbers between the cohorts could result from the fact that in autumn, but not in spring, A. vernalis, because so rich in energy, is strongly positively selected by predators.
  相似文献   

18.
The fuel characteristics of solid biofuels derived from biomass that is abundantly available in Malaysia are presented. The objectives of the study were to characterize fuel properties of oil palm biomass (empty fruit bunch (EFB) and oil palm trunk (OPT)) and wood from a range of fast growing timber species (Albizia falcataria, Acacia spp., Endospermum spp. and Macaranga spp.), inclusive and exclusive of bark. Among the fast-growing timber species, the higher heating values ranged from 4288 cal g-1 to 4383 cal g-1 for wood inclusive of bark, and 4134 cal g-1 to 4343 cal g-1 for wood exclusive of bark. The inclusive of bark portion in the biomass sample generally increased the heating value except for Macaranga spp. Empty fruit bunch and oil palm trunk had heating values of 4315 cal g-1 and 4104 cal g-1, respectively. Ash-forming elements and trace elements were much higher in the timber species samples inclusive of bark than samples exclusive of bark. On the other hand, oil palm biomass contained higher ash-forming elements and trace elements than the wood from the fast growing timber species. The European energy crops show higher HHV, Cl and Si content but lower K, Mg, Na and P compared to the local biomass used in this study. The data obtained from this study can serve as a foundation for the selection of suitable biomass to be used as solid fuel, or as a reference on the fabrication of conversion systems for the selection of biomass solid fuel.  相似文献   

19.
Feed-switching experiments were carried out in steady-state methanol-excess chemostat Methylobacterium sp. RXM cultures at a fixed dilution rate, temperature and pH (0.10 h–1, 30° C and 6.95, respectively). The removal of molybdate from the nutrient supply led to a metabolic energy deficiency reflected in the molar growth yield and biomass values. High carbon conversion efficiency was linked with high formate dehydrogenase (FDH) activity and observed only when either molybdate or tungstate was added to the feed medium. A constant coenzyme ratio NAD+/K-ferri-cyanide linked to FDH activity was found during the enzyme stimulation period following the feed-switching experiment with tungstate addition, which suggests that both activities belong to the same enzyme. Quantitative metabolic responses (carbon conversion efficiency, methanol and O2 consumption rates, CO2 production rate and respiratory quotient) were measured in between steady-states just after the shift in the nutrient supply composition. Correspondence to: F. M. Gírio  相似文献   

20.
Conversion factors of 23.6, 39.5 and 17.2 MJ/kg for protein, lipid and carbohydrate contents, respectively, are frequently used in fish studies to calculate the gross energy (GE) content of compound diets. Values predicted according to the above resulted in linear relationships of observed GE values with similar R 2 and mean prediction error (MPE) values when using either nitrogen-free extract (NFE) (R 2 = 0.5713, RMSE = 1.3134, MPE = 0.0741, n = 129, 32 studies) or starch (R 2 = 0.5665, RMSE = 1.6768, MPE = 0.0839, n = 190, 45 studies) as measurements of carbohydrate content. Apparent digestible carbohydrate content (either NFE or starch) was found to be linearly-related (R 2 values of 0.7531 and 0.7460, respectively) to its dietary content in compound fish diets. Predicted apparent digestible protein (ADP), lipid (DL) and carbohydrate contents, together with energy conversion factors, presented R 2 and MPE values of 0.6205 (RMSE = 1.2606) and 0.2051, respectively, between observed and predicted apparent digestible energy (ADE) content with NFE as measurement of carbohydrate content (n = 97, 17 studies, eight fish species). However, with carbohydrates quantified by starch content, an R 2 value of 0.7017 (RMSE = 1.7556) and MPE of 0.1055 were obtained (n = 37, 10 studies, five fish species).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号