首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of different calcium-antagonists on secretion of very-low-density lipoprotein (VLDL) from cultured rat hepatocytes were examined. Verapamil (an inhibitor of voltage-dependent calcium channels) and EGTA (a calcium chelator) decreased VLDL-triacylglycerol secretion in a concentration-dependent manner, with maximum inhibition (about 90%) at 0.2 mM-verapamil and 5 mM-EGTA. Inorganic calcium-antagonists such as lanthanum, nickel, cobalt and manganese decreased secretion of VLDL-triacylglycerol by 55-95%, whereas the calcium-agonist barium did not affect secretion. Inhibition of VLDL-triacylglycerol secretion appeared within 30 min, without inhibition of triacylglycerol synthesis. Pulse-chase experiments revealed that verapamil and cobalt inhibited the secretory pathway itself. Cobalt showed a concentration-dependent inhibition of VLDL-triacylglycerol secretion, with maximal effect at 8 mM. Although inhibition by cobalt was not completely reversible, Trypan Blue exclusion and lactate dehydrogenase leakage indicated that the hepatocytes were not injured by cobalt or any of the other calcium-antagonists tested. Inhibition of protein synthesis by cycloheximide did not affect triacylglycerol secretion (up to 2 h), and the observed effects were therefore probably not due to impaired production of apolipoproteins. Taken together, these results suggest that calcium is important for secretion of VLDL particles.  相似文献   

2.
3.
The removal from the blood and the uptake by the liver of injected very-low-density lipoprotein (VLDL) preparations that had been radiolabelled in their apoprotein and cholesteryl ester moieties was studied in lactating rats. Radiolabelled cholesteryl ester was removed from the blood and taken up by the liver more rapidly than sucrose-radiolabelled apoprotein. Near-maximum cholesteryl ester uptake by the liver occurred within 5 min of the injection of the VLDL. At this time, apoprotein B uptake by the liver was only about 25% of the maximum. Maximum uptake of the injected VLDL apoprotein B label was not achieved until at least 15 min after injection, by which time the total uptakes of cholesteryl ester and apoprotein B label were very similar. The results suggest that preferential uptake of the lipoprotein cholesteryl ester by the liver occurred before endocytosis of the entire lipoprotein complex. The fate of the injected VLDL cholesteryl ester after its uptake by the liver was also monitored. Radiolabel associated with the hepatic cholesteryl ester fraction fell steadily from its early maximum level, the rate of fall being faster and more extensive when the fatty acid, rather than the cholesterol, moiety of the ester was labelled. By 30 min after the injection of VLDL containing [3H]cholesteryl ester, over one-third of the injected label was already present as [3H]cholesterol in the liver. When VLDL containing cholesteryl [14C]oleate was injected, a substantial proportion (about 25%) of the injected radiolabelled fatty acid appeared in the hepatic triacylglycerol fraction within 60 min: very little was present in the plasma triacylglycerol fraction at this time.  相似文献   

4.
The objectives of this study were to measure intestinal very-low-density lipoprotein (VLDL) production in obese Zucker rats and to assess an eventual effect of a high-fat diet. VLDL secretion was specifically inhibited by orotic acid, and intestinal VLDL output was measured following the Triton WR-1339 method. After a control diet, total VLDL secretion (without orotic acid) was 4.8 +/- 0.3 and 1.4 +/- 0.1 mg triacylglycerol/ml in obese and lean rats, respectively, decreasing by 30% in obese rats after fat-feeding. Intestinal VLDL production was similar in obese and lean rats fed the control diet (0.32 +/- 0.05 and 0.27 +/- 0.05 mg triacylglycerol/ml, respectively), increasing 2.5-fold after fat-feeding in both genotypes. Thus, intestine contributed 21 and 60% of total VLDL in lean but only 7 and 24% in obese rats with the control and high-fat diets, respectively. These results show that the intestine of obese Zucker rats does not contribute to their hypertriglyceridemia, suggesting that it originates solely from liver. Moreover, their intestinal VLDL production was stimulated by fat-feeding to the same extent as in lean animals.  相似文献   

5.
A method is described using an extended (8 h), rat liver perfusion that produces approx. 100 mg of selectively radiolabelled, mature, very-low-density lipoprotein suitable for use in subsequent whole organ perfusion experiments.  相似文献   

6.
Primary cultures of rat hepatocytes were used to study secretion of very-low-density lipoproteins and metabolism of asialofetuin. The ionophore monensin inhibited both secretion of very-low-density lipoproteins and binding and degradation of asialofetuin in a concentration-dependent manner. Secretion as well as receptor binding were markedly decreased after 15 min treatment with monensin. The inhibitory effect of the ionophore was fully reversible, and no effect on protein synthesis was observed at concentrations up to 50 microM. The secretion of apoproteins (B-small, B-large and E) and that of albumin were inhibited to the same extent as was triacylglycerol secretion. Secretion of very-low-density lipoproteins was more sensitive to low concentrations of monensin than was the metabolism of asialofetuin. Maximum inhibition of very-low-density-lipoprotein secretion was obtained at 5-10 microM-monensin, whereas 25 microM was required to obtain maximum inhibition of binding and degradation of asialofetuin. The number of surface receptors for asialofetuin decreased to about half when the cells were exposed to 25 microM-monensin. It is possible that monensin inhibits endo- and exo-cytosis via a similar mechanism, e.g. by disturbing proton gradients. Since secretion of very-low-density lipoproteins was more sensitive to low concentrations of monensin, it is likely that monensin independently inhibits endocytic and secretory functions in cultured hepatocytes.  相似文献   

7.
Very-low-density lipoprotein (VLDL), labelled in vivo with [9,10-3H]oleate, was taken up rapidly by liver after injection in vivo. Initially, radioactive lipoprotein remnants in the VLDL density range were present in liver as a bound extracellular pool that could be released by perfusion with polyphosphate or heparin. The bound remnant showed a decrease in mean diameter and an increased proportion of cholesteryl ester as a function of time after injection. When VLDL of different mean diameters was injected, it was found that: (1) total uptake by liver was independent of diameter; (2) small VLDL was not taken up more rapidly than large VLDL; and (3) Large VLDL lost no more triacylglycerol before binding than did small VLDL and larger species of mean diameter greater than 40 nm were bound. It is concluded that there is no unique VLDL remnant taken up by liver in vivo. When livers were perfused after binding radioactive VLDL in vivo, the lipoprotein was metabolized, with the production of water-soluble products, and this metabolism was inhibited by chloroquine.  相似文献   

8.
Hepatocytes obtained from rats fed a choline-deficient diet for 3 days were cultured in a medium +/- choline (100 microM) or methionine (200 microM). We investigated how choline deficiency affected hepatic lipogenesis, apolipoprotein synthesis, and lipoprotein secretion. The mass of triacylglycerol and phosphatidylcholine secreted was increased about 3-fold and 2-fold, respectively, by the addition of either choline or methionine to the cultured cells. Similarly, a 3-fold stimulation in the secretion of [3H]triacylglycerol and [3H]phosphatidylcholine derived from [3H]oleate was observed after the addition of choline or methionine. Fractionation of secreted lipoproteins by ultracentrifugation revealed that the reduced secretion of triacylglycerol and phosphatidylcholine from choline-deficient cells was mainly due to impaired secretion of very low density lipoproteins (VLDL) (but not high density lipoproteins (HDL)). Fluorography of L-[4,5-3H]leucine-labeled lipoproteins showed a remarkable inhibition of VLDL secretion by choline deficiency. The addition of choline or methionine stimulated the synthesis of phosphatidylcholine and increased the cellular phosphatidylcholine levels to that in normal cells. While there was little effect of choline on the synthesis and amount of cellular phosphatidylethanolamine, the addition of methionine diminished cellular phosphatidylethanolamine levels. Choline deficiency did not change the rate of incorporation of L-[4,5-3H]leucine into cellular VLDL apolipoproteins, nor the rate of disappearance of radioactivity from L-[4,5-3H]leucine-labeled cellular apoB, apoE, and apoC. These results suggest that hepatic secretion of VLDL, but not HDL, requires active phosphatidylcholine biosynthesis. Secondly, the inhibitory effect of choline deficiency on VLDL secretion can be compensated by the methylation of phosphatidylethanolamine.  相似文献   

9.
The effects of oleic acid on the biosynthesis and secretion of VLDL (very-low-density-lipoprotein) apoproteins and lipids were investigated in isolated perfused rat liver. Protein synthesis was measured by the incorporation of L-[4,5-3H]leucine into the VLDL apoproteins (d less than 1.006) and into apolipoproteins of the whole perfusate (d less than 1.21). Oleate did not affect incorporation of [3H]leucine into total-perfusate or hepatic protein. The infusion of oleate, however, increased the mass and radioactivity of the VLDL apoprotein in proportion to the concentration of oleate infused. Uptake of oleate was similar with livers from fed or fasted animals. Fasting itself (24 h) decreased the net secretion and incorporation of [3H]leucine into total VLDL apoprotein and decreased the output of VLDL protein by the liver. A linear relationship existed between the output of VLDL triacylglycerol (mumol/h per g of liver) and secretion and/or synthesis of VLDL protein. Net output of VLDL cholesterol and phospholipid also increased linearly with VLDL-triacylglycerol output. Oleate stimulated incorporation of [3H]leucine into VLDL apo (apolipoprotein) E and apo C by livers from fed animals, and into VLDL apo Bh, B1, E and C by livers from fasted rats. The incorporation of [3H]leucine into individual apolipoproteins of the total perfusate lipoprotein (d less than 1.210 ultracentrifugal fraction) was not changed significantly by oleate during perfusion of livers from fed rats, suggesting that the synthesis de novo of each apolipoprotein was not stimulated by oleate. This is in contrast with that observed with livers from fasted rats, in which the synthesis of the total-perfusate lipoprotein (d less than 1.210 fraction) apo B, E and C was apparently stimulated by oleate. The observations with livers from fed rats suggest redistribution of radioactive apolipoproteins to the VLDL during or after the process of secretion, rather than an increase of apoprotein synthesis de novo. It appears, however, that the biosynthesis of apo B1, Bh, E and C was stimulated by oleic acid in livers from fasted rats. Since the incorporations of [3H]leucine into the VLDL and total-perfusate apolipoproteins were increased in fasted-rat liver when the fatty acid was infused, part of the apparent stimulated synthesis of the VLDL apoprotein may be in response to the increased formation and secretion of VLDL lipid.  相似文献   

10.
1. The work reported was designed to provide quantitative information about the capacity of the extrahepatic tissues of the rat to degrade injected VLD lipoproteins (very-low-density lipoproteins, d less than 1.006) to LD lipoproteins (low-density lipoproteins, d 1.006--1.063) and to study the fate of the different VLD-lipoprotein apoproteins during the degradative process. 2. Rat liver VLD lipoproteins, radioactively labelled in their protein moieties, were produced by the perfusion of the organ and were either injected into the circulation of the supradiaphragmatic rats or incubated in rat plasma at 37 degrees C. At a time (75 min) when approx. 90% of the triacylglycerol of the VLD lipoproteins had been hydrolysed the supradiaphragmatic rats were bled and VLD lipoproteins, LD lipoproteins and HD lipoproteins (high-density lipoproteins, d 1.063--1.21) were separated from their plasma and from the plasma incubated in vitro. The apoproteins of each of the lipoprotein classes were resolved by gel-filtration chromatography into three main fractions, designated peaks I, II and III. 3. Incubation of the liver VLD lipoproteins in plasma in vitro led to the transfer of about 30% of the total protein radioactivity to the HD lipoproteins. The transfer mainly involved the peak-II (arginine-rich and/or apo A-I) and peak-III (apo C) proteins. There was also a small transfer of radioactivity (about 5% of the total) to the LD lipoproteins. 4. Injection of the liver VLD lipoproteins into the circulation of the supradiaphragmatic rat resulted in the transfer of about 15% of the total VLD-lipoprotein radioactivity to the LD lipoproteins. The transfer involved mainly the peak-I (apo B) proteins and accounted for about 20% of the total apo B protein radioactivity of the injected VLD lipoproteins. When the endogenous plasma VLD lipoprotein was taken into account the transfer of apo B protein was about 35%. 5. The transfer of peak-II protein radioactivity from the VLD to the HD lipoproteins was greater in the plasma of the supradiaphragmatic rat than in the incubated plasma suggesting that there was a net transfer of peak-II apoproteins during the VLD lipoprotein degradation. The transfer of peak-III protein radioactivity was not greater in the plasma of the supradiaphragmatic rat, but there was a loss of this radioactivity from the circulation.  相似文献   

11.
The role that phosphatidylcholine biosynthesis plays in the assembly and secretion of lipoproteins has been investigated in rat hepatocytes, since phosphatidylcholine is the major phospholipid in all serum lipoproteins. Phosphatidylcholine in rat hepatocytes can be made via the CDPcholine pathway or by the methylation of phosphatidylethanolamine. A specific inhibitor of cellular transmethylation, 3-deazaadenosine (10 microM), has been incubated with rat hepatocytes, and we have shown that the biosynthesis of phosphatidylcholine via the methylation of phosphatidylethanolamine derived from ethanolamine was inhibited by greater than 95%. However, incubation of 3-deazaadenosine with cultured rat hepatocytes for up to 18 h did not affect the secretion of any of the apoproteins into VLDL, LDL, HDL fractions or a fraction with density greater than 1.18 g/ml (albumin was the major protein). Nor was there any effect by 3-deazaadenosine on the amount of phosphatidylcholine secreted into the culture medium or into VLDL or HDL. After 18 h the amount of phosphatidylethanolamine that accumulated in the cells was doubled by treatment with 3-deazaadenosine, and the amount of phosphatidylethanolamine secreted into the medium was increased by approximately 70%. It is thus apparent that the synthesis of phosphatidylcholine from ethanolamine is not required for lipoprotein secretion by rat hepatocytes.  相似文献   

12.
The hypothesis that the apoprotein composition of nascent very-low-density lipoprotein (VLDL) secreted by the hepatocyte is determined by the relative rates of apoprotein synthesis and their affinities of binding to VLDL was tested using chick hepatocytes in monolayer culture. Chick cells were chosen for the study of lipoprotein assembly since estradiol treatment can be used to alter the composition of the apoprotein mixture synthesized by these cells. The secretion of apoprotein (apo) B by estradiol-treated hepatocytes was elevated 4.2-fold above the basal level measured in control cells. Furthermore, estradiol-treated cells secreted apo-II, a major VLDL apoprotein not synthesized prior to estradiol treatment, at a level equivalent to that of apo-B. However, no difference in the secretion of apo-A-I and other newly identified nascent VLDL apoproteins was detected. These changes in relative rates of apoprotein synthesis altered the composition of nascent VLDL secreted by control versus estradiol-induced cells from: apo-B, 22 to 40%; apo-II, 0 to 32%; apo-37 kDa, 14 to 6%; apo-A-I, 31 to 12%; apo-17 kDa, 10 to 4%; apo-9 kDa, 15 to less than 10%; and apo-6 kDa, 8 to less than 2%. To investigate the basis for the preferential incorporation of apo-B and apo-II into nascent VLDL, the relative affinities of the apoproteins for VLDL were compared by measuring their capacities to transfer from VLDL into other lipoprotein or nonlipoprotein density classes. Culture medium containing [3H]leucine-labeled VLDL was incubated with plasma deficient in lipoproteins of rho less than 1.006 g/ml. Within 30 min of incubation at 37 degrees C, 3H-labeled apo-A-I and apo-9 kDa exchanged between VLDL and high-density lipoprotein, whereas apo-37 kDa exchanged between VLDL and the rho greater than 1.21 g/ml fraction. Neither apo-B nor apo-II underwent transfer from nascent VLDL. These results suggest that the relative rates of input of apoproteins into the secretory pathway and their affinities of binding to the nascent VLDL particle determine their extent of incorporation into, and, thus, the apoprotein composition of secreted VLDL.  相似文献   

13.
The secretion of very-low-density lipoprotein (VLDL) triacylglycerol and cholesterol was determined under various conditions in hepatocytes prepared from rats maintained on a controlled lighting and feeding schedule. The rate of lipogenesis in hepatocytes prepared from rats during the feeding period was 2-3-fold higher than that in cells prepared immediately before the animals had access to food. However, there were no corresponding changes in the rates of secretion of triacylglycerol and cholesterol. Pyruvate alone stimulated triacylglycerol secretion but had no effect on the secretion of cholesterol. Despite its stimulation of lipogenesis, insulin suppressed the secretion of both triacylglycerol and cholesterol. This effect on triacylglycerol secretion was more pronounced when lipogenesis was enhanced in the presence of pyruvate. Thus, insulin may act to alleviate hypertriglyceridaemia, which may arise during periods of increased hepatic lipogenesis. The inhibitory effect of glucagon on cholesterol secretion was much less pronounced than that on the secretion of triacylglycerol. The inhibitory effects of glucagon were reversed by pyruvate on cholesterol secretion differed according to whether glucagon was present or absent. These results suggest that the rate of hepatic VLDL triacylglycerol secretion is not necessarily coupled to the rate of lipogenesis in the liver; nor is there any obligatory coupling between the output of triacylglycerol and cholesterol associated with VLDL.  相似文献   

14.
Cholesterol is required for infection by Semliki Forest virus   总被引:11,自引:2,他引:9       下载免费PDF全文
Semliki Forest virus (SFV) and many other enveloped animal viruses enter cells by a membrane fusion reaction triggered by the low pH within the endocytic pathway. In vitro, SFV fusion requires cholesterol in the target membrane, but the role of cholesterol in vivo is unknown. In this paper, the infection pathway of SFV was studied in mammalian and inset cells substantially depleted of sterol. Cholesterol-depleted cells were unaltered in their ability to bind, internalize, and acidify virus, but were blocked in SFV fusion and subsequent virus replication. Depleted cells could be infected by the cholesterol-independent vesicular stomatitis virus, which also enters cells via endocytosis and low pH-mediated fusion. The block in SFV infection was specifically reversed by cholesterol but not by cholestenone, which lacks the critical 3 beta-hydroxyl group. Cholesterol thus is central in the infection pathway of SFV, and may act in vivo to modulate infection by SFV and other pathogens.  相似文献   

15.
It has already been reported that stably expressed exogenous human wild-type EPO (wtEPO) is preferentially secreted to the apical side and one of the three N-linked carbohydrate chains critically acts as an apical sorting determinant in Madin-Darby canine kidney (MDCK) cells. It has been suggested that lipid rafts are involved in the apical sorting of membrane and secretory proteins. To investigate the involvement of lipid rafts in the apical sorting of wtEPO, we examined the effect of cholesterol depletion with methyl-beta-cyclodextrin on the secretion polarity of EPO and analyzed Triton X-100 insoluble cell extracts by sucrose density gradients centrifugation in MDCK cells. We found that wtEPO was shifted in non-polarized direction by cholesterol depletion. Most of the wtEPO was not detectable in the raft fractions by sucrose density gradients centrifugation analysis. These results indicate that apical secretion of EPO involves a cholesterol-dependent mechanism probably not involving lipid rafts.  相似文献   

16.
Cholesterol and hepatic lipoprotein assembly and secretion   总被引:3,自引:0,他引:3  
  相似文献   

17.
1. Donor perfused rat livers were used to prepare VLD (very-low-density) lipoproteins, labelled in their triacylglycerol and protein components with [1-14C]oleic acid and L-[4,5-3H]leucine respectively. Partially metabolized VLD lipoproteins, similarly labelled, were obtained from supradiaphragmatic rats injected with the parent VLD lipoproteins. 2. The triacylglycerol and protein components of the partially metabolized VLD lipoproteins were removed by recipient perfused rat livers at rates much higher than those of the parent VLD lipoproteins. No degradation of the partially metabolized VLD lipoproteins to LD (low-density) lipoproteins occurred during the perfusions. 3. Removal of hepatic lipase from the livers did not significantly affect the rate of removal of the partially metabolized VLD lipoproteins.  相似文献   

18.
The effects of dexamethasone (a synthetic glucocorticoid) and insulin on the secretion of very-low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) were investigated. Rat hepatocytes in monolayer culture were preincubated for 15 h in the presence or absence of combinations of 100 nM-dexamethasone and 2 nM-, 10 nM- or 50 nM-insulin. Dexamethasone increased [3H]oleate incorporation into secreted triacylglycerol by 2.7-fold and the mass of triacylglycerol secreted by 1.5-fold. Insulin alone decreased these parameters and antagonized the effect of dexamethasone. Dexamethasone increased the secretion of [3H]leucine in apolipoprotein (apo) E, and in the large (BH) and small (BI) forms of apo B in VLDL by about 7.1-, 3.6- and 4.0-fold respectively. Insulin alone decreased the secretion of these 3H-labelled apolipoproteins in VLDL. However, 2 nM-insulin with dexamethasone increased the secretion of 3H-labelled apo BH and apo BL by a further 0.8- and 3.2-fold respectively; 50 nM-insulin decreased the secretions of apo E, apo BH and apo BL in VLDL. Similar effects for dexamethasone or insulin alone were also obtained for the masses of apo E and apo BL + H secreted in VLDL. Albumin secretion was not significantly altered by either dexamethasone or insulin alone, but in combination they stimulated by 2.1-2.6-fold. Insulin or dexamethasone alone had little effect on the secretion of apolipoproteins in the HDL fraction. However, dexamethasone plus 2 nM-insulin increased the incorporation of [3H]leucine into apo AI, apo AH plus apo C, apo AIV and apo E of HDL by about 1.8-, 1.6-, 1.7- and 2.0-fold respectively. The apo E in the bottom fraction represented about 69% of the total 3H-labelled apo E secreted. The responses in the total secretion of apo E from the hepatocytes resembled those seen in HDL. The interactions of insulin and dexamethasone are discussed in relation to the general regulation of lipoprotein metabolism, the development of hyperlipidaemias and the predisposition to premature atherosclerosis.  相似文献   

19.
Very-low-density lipoprotein (VLDL) and chylomicrons (CM) are major sources of fatty acid supply to the heart, but little is known about their metabolism in diabetic myocardium. To investigate this, working hearts isolated from control rats and diabetic rats 2 wk following streptozotocin (STZ) injection were perfused with control and diabetic lipoproteins. Analysis of the diabetic lipoproteins showed that both VLDL and CM were altered compared with control lipoproteins; both were smaller and had different apolipoprotein composition. Heparin-releasable lipoprotein lipase (HR-LPL) activity was increased in STZ-induced diabetic hearts, but tissue residual LPL activity was decreased; moreover, diabetic lipoproteins stimulated HR-LPL activity in both diabetic and control hearts. Diabetic hearts oxidized lipoprotein-triacylglycerol (TAG) to a significantly greater extent than controls (>80% compared with deposition as tissue lipid), and the oxidation rate of exogenous lipoprotein-TAG was increased significantly in diabetic hearts regardless of TAG source. Significantly increased intracardiomyocyte TAG accumulation was found in diabetic hearts, although cardiac mechanical function was not inhibited, suggesting that lipotoxicity precedes impaired cardiac performance. Glucose oxidation was significantly decreased in diabetic hearts; additionally, however, diabetic lipoproteins decreased glucose oxidation in diabetic and control hearts. These results demonstrate increased TAG-rich lipoprotein metabolism concomitant with decreased glucose oxidation in type 1 diabetic hearts, and the alterations in cardiac lipoprotein metabolism may be due to the properties of diabetic TAG-rich lipoproteins as well as the diabetic state of the myocardium. These changes were not related to cardiomyopathy at this early stage of diabetes.  相似文献   

20.
BackgroundIn Gram-negative bacteria, type Va and Vc autotransporters are proteins that contain both a secreted virulence factor (the “passenger” domain) and a β-barrel that aids its export. While it is known that the folding and insertion of the β-barrel domain utilize the β-barrel assembly machinery (BAM) complex, how the passenger domain is secreted and folded across the membrane remains to be determined. The hairpin model states that passenger domain secretion occurs independently through the fully-formed and membrane-inserted β-barrel domain via a hairpin folding intermediate. In contrast, the BamA-assisted model states that the passenger domain is secreted through a hybrid of BamA, the essential subunit of the BAM complex, and the β-barrel domain of the autotransporter.MethodsTo ascertain the models' plausibility, we have used molecular dynamics to simulate passenger domain secretion for two autotransporters, EspP and YadA.ResultsWe observed that each protein's β-barrel is unable to accommodate the secreting passenger domain in a hairpin configuration without major structural distortions. Additionally, the force required for secretion through EspP's β-barrel is more than that through the BamA β-barrel.ConclusionsSecretion of autotransporters most likely occurs through an incompletely formed β-barrel domain of the autotransporter in conjunction with BamA.General significanceSecretion of virulence factors is a process used by practically all pathogenic Gram-negative bacteria. Understanding this process is a necessary step towards limiting their infectious capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号