首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abe I  Watanabe T  Noguchi H 《Phytochemistry》2004,65(17):2447-2453
Recombinant chalcone synthase (CHS) from Scutellaria baicalensis and stilbene synthase (STS) from Arachis hypogaea accepted CoA esters of long-chain fatty acid (CHS up to the C12 ester, while STS up to the C14 ester) as a starter substrate, and carried out sequential condensations with malonyl-CoA, leading to formation of triketide and tetraketide alpha-pyrones. Interestingly, the C6, C8, and C10 esters were kinetically favored by the enzymes over the physiological starter substrate; the kcat/KM values were 1.2- to 1.9-fold higher than that of p-coumaroyl-CoA. The catalytic diversities of the enzymes provided further mechanistic insights into the type III PKS reactions, and suggested involvement of the CHS-superfamily enzymes in the biosynthesis of long-chain alkyl polyphenols such as urushiol and ginkgolic acid in plants.  相似文献   

2.
Benzophenone derivatives, such as polyprenylated benzoylphloroglucinols and xanthones, are biologically active secondary metabolites. The formation of their C13 skeleton is catalyzed by benzophenone synthase (BPS; EC 2.3.1.151) that has been cloned from cell cultures of Hypericum androsaemum. BPS is a novel member of the superfamily of plant polyketide synthases (PKSs), also termed type III PKSs, with 53-63% amino acid sequence identity. Heterologously expressed BPS was a homodimer with a subunit molecular mass of 42.8 kDa. Its preferred starter substrate was benzoyl-CoA that was stepwise condensed with three malonyl-CoAs to give 2,4,6-trihydroxybenzophenone. BPS did not accept activated cinnamic acids as starter molecules. In contrast, recombinant chalcone synthase (CHS; EC 2.3.1.74) from the same cell cultures preferentially used 4-coumaroyl-CoA and also converted CoA esters of benzoic acids. The enzyme shared 60.1% amino acid sequence identity with BPS. In a phylogenetic tree, the two PKSs occurred in different clusters. One cluster was formed by CHSs including the one from H. androsaemum. BPS grouped together with the PKSs that functionally differ from CHS. Site-directed mutagenesis of amino acids shaping the initiation/elongation cavity of CHS yielded a triple mutant (L263M/F265Y/S338G) that preferred benzoyl-CoA over 4-coumaroyl-CoA.  相似文献   

3.
决明查尔酮合成酶基因的克隆及序列分析   总被引:3,自引:2,他引:1  
以决明(Cassia tora)为实验材料,利用RT-PCR和RACE技术,从决明嫩叶中克隆出查尔酮合成酶(Chal-one synthase,CHS)基因,其cDNA全长为1 459 bp,编码一个由390个氨基酸残基组成的多肽.氨基酸序列分析表明,决明CHS基因的氨基酸序列中含有44.61%的中性疏水氨基酸,29.74%的中性亲水氨基酸,12.56%的酸性氨基酸和13.O8%的碱性氨基酸.决明CHS基因的氨基酸序列中具有CHS家族酶系的氨基酸保守残基,包括结合底物CoA的结合残基及催化聚酮合成的催化残基,表明其可能参与聚酮化合物的合成.决明与其它植物CHS的氨基酸序列的进化分析表明,其与同为豆科决明属的翼叶决明(Cassia alata)的同源性较近,并且CHS家族可以分为CHS亚家族与非CHS亚家族.将得到的序列提交GenBank,登录号为EU430077.  相似文献   

4.
Benzalacetone synthase (BSA) is a novel plant-specific polyketide synthase that catalyzes a one step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 skeleton of phenylbutanoids in higher plants. A cDNA encoding BAS was for the first time cloned and sequenced from rhubarb (Rheum palmatum), a medicinal plant rich in phenylbutanoids including pharmaceutically important phenylbutanone glucoside, lindleyin. The cDNA encoded a 42-kDa protein that shares 60-75% amino-acid sequence identity with other members of the CHS-superfamily enzymes. Interestingly, R. palmatum BAS lacks the active-site Phe215 residue (numbering in CHS) which has been proposed to help orient substrates and intermediates during the sequential condensation of 4-coumaroyl-CoA with malonyl-CoA in CHS. On the other hand, the catalytic cysteine-histidine dyad (Cys164-His303) in CHS is well conserved in BAS. A recombinant enzyme expressed in Escherichia coli efficiently afforded benzalacetone as a single product from 4-coumaroyl-CoA and malonyl-CoA. Further, in contrast with CHS that showed broad substrate specificity toward aliphatic CoA esters, BAS did not accept hexanoyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and acetyl-CoA as a substrate. Finally, besides the phenylbutanones in rhubarb, BAS has been proposed to play a crucial role for the construction of the C6-C4 moiety of a variety of natural products such as medicinally important gingerols in ginger plant.  相似文献   

5.
查尔酮合酶(chalcone synthase, CHS)是植物类黄酮化合物合成的关键酶,有关蕨类植物CHS基因的序列及功能信息尚不完善。本研究采用快速扩增cDNA末端(RACE)技术克隆获得了模式蕨类植物——水蕨(Ceratopteris thalictroides)CtCHS基因(GenBank登录号:JX027616.1),其cDNA序列全长为1616 bp,具有3个外显子和2个内含子,开放阅读框(ORF)为1215 bp,编码404个氨基酸。进化树分析表明,CtCHS与问荆(Equisetum arvense)、松叶蕨(Psilotum nudum)和3种薄囊蕨的查尔酮合成酶基因聚为一枝,说明这些蕨类植物亲缘关系较近且为单系起源。通过构建原核表达体系成功获得CtCHS蛋白的多克隆抗体并用于免疫印迹分析,结果表明CtCHS基因的表达明显受紫外光(UV)诱导。CtCHS基因的克隆与表达分析为进一步研究水蕨类黄酮化合物的合成及其调控机制提供了依据。  相似文献   

6.
利用PCR与TAlL-PCR方法,从半月苔(Lunularia cructata(L.)Dum.ex Lindb)中获得了一段长约l 000 bp的基因片段,它与已知的CHS基因在核苷酸水平上的相似性大于56%,在氨基酸水平上的相似性大于60%,所推断的氨基酸序列中酶反应的4个催化位点与已知晶体结构的紫花苜蓿MCHS2A上的催化位点相同,首次证明了苔类植物中可能存在类CHS基因,将CHS基因的起源时间推到苔藓类植物出现之前.以该序列和两种蕨类植物(Psilotumnudum(L.)Griseb.和Equisetum arvense L.)的CHS序列作为外类群,应用邻接法、最大简约法和最大似然法分别构建了被子植物的CHS的分子系统树.结果表明,大部分科中的CHS分布在不同的分支上,而十字花科、可科和禾本科各自聚成一个单系类群.以邻接树为依据,对茄科、旋花科和菊科的CHS基因进行了相对碱基替换速率的检测,发现这三个科内或科间序列的替换速率不一致.被子植物的CHS基因在基因拷贝数目、碱基替换速率以及重复/丢失事件的发生上都存在较大的差异,这种差异可能与被子植物的生活史、生活环境、花的特性以及对外界的防御系统等的多样性相关.  相似文献   

7.
CHS基因起源初探及其在被子植物中的进化分析   总被引:6,自引:0,他引:6  
利用PCR与TAIL-PCR方法,从半月苔(Lunulariacruciata(L.)Dum.exLindb.)中获得了一段长约1000bp的基因片段,它与已知的CHS基因在核苷酸水平上的相似性大于56%,在氨基酸水平上的相似性大于60%,所推断的氨基酸序列中酶反应的4个催化位点与已知晶体结构的紫花苜蓿MCHS2A上的催化位点相同,首次证明了苔类植物中可能存在类CHS基因,将CHS基因的起源时间推到苔藓类植物出现之前。以该序列和两种蕨类植物(Psilotumnudum(L.)Griseb.和EquisetumarvenseL.)的CHS序列作为外类群,应用邻接法、最大简约法和最大似然法分别构建了被子植物的CHS的分子系统树。结果表明,大部分科中的CHS分布在不同的分支上,而十字花科、豆科和禾本科各自聚成一个单系类群。以邻接树为依据,对茄科、旋花科和菊科的CHS基因进行了相对碱基替换速率的检测,发现这三个科内或科间序列的替换速率不一致。被子植物的CHS基因在基因拷贝数目、碱基替换速率以及重复/丢失事件的发生上都存在较大的差异,这种差异可能与被子植物的生活史、生活环境、花的特性以及对外界的防御系统等的多样性相关。  相似文献   

8.
Jiang C  Schommer CK  Kim SY  Suh DY 《Phytochemistry》2006,67(23):2531-2540
Since the early evolution of land plants from primitive green algae, flavonoids have played an important role as UV protective pigments in plants. Flavonoids occur in liverworts and mosses, and the first committed step in the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS). Although higher plant CHSs have been extensively studied, little information is available on the enzymes from bryophytes. Here we report the cloning and characterization of CHS from the moss, Physcomitrella patens. Taking advantage of the available P. patens EST sequences, a CHS (PpCHS) was cloned from the gametophores of P. patens, and heterologously expressed in Escherichia coli. PpCHS exhibited similar kinetic properties and substrate preference profile to those of higher plant CHS. p-Coumaroyl-CoA was the most preferred substrate, suggesting that PpCHS is a naringenin chalcone producing CHS. Consistent with the evolutionary position of the moss, phylogenetic analysis placed PpCHS at the base of the plant CHS clade, next to the microorganism CHS-like gene products. Therefore, PpCHS likely represents a modern day version of one of the oldest CHSs that appeared on earth. Further, sequence analysis of the P. patens EST and genome databases revealed the presence of a CHS multigene family in the moss as well as the 3'-end heterogeneity of a CHS gene. Of the 19 putative CHS genes, 10 genes are expressed and have corresponding ESTs in the databases. A possibility of the functional divergence of the multiple CHS genes in the moss is discussed.  相似文献   

9.
报道了安徽大别山区蕨类植物新记录种--松叶蕨Psilotum nudum (L.) Beauv.,并描述其形态特征和国内地理分布。  相似文献   

10.
Substrate specificity of recombinant chalcone synthase (CHS) from Scutellaria baicalensis (Labiatae) was investigated using chemically synthesized aromatic and aliphatic CoA esters. It was demonstrated for the first time that CHS converted benzoyl-CoA to phlorobenzophenone (2,4,6-trihydroxybenzophenone) along with pyrone by-products. On the other hand, phenylacetyl-CoA was enzymatically converted to an unnatural aromatic polyketide, phlorobenzylketone (2, 4,6-trihydroxyphenylbenzylketone), whose structure was finally confirmed by chemical synthesis. Furthermore, in agreement with earlier reports, S. baicalensis CHS also accepted aliphatic CoA esters, isovaleryl-CoA and isobutyryl-CoA, to produce phloroacylphenones. In contrast, hexanoyl-CoA only afforded pyrone derivatives without formation of a new aromatic ring. It was noteworthy that both aromatic and aliphatic CoA esters were accepted in the active site of the enzyme as a starter substrate for the complex condensation reaction. The low substrate specificity of CHS thus provided further insight into the structure and function of the enzyme.  相似文献   

11.
植物类型Ⅲ聚酮合酶超家族(PKSs),又称查尔酮合酶(Chalcone synthase,CHS)超家族,催化合成多种植物次生代谢产物的分子骨架。苯亚甲基丙酮合酶(Benzalacetone synthase,BAS)催化4-香豆酰辅酶A与丙二酰辅酶A通过一步脱羧缩合反应生成苯亚甲基丙酮,是一系列具有重要生物学活性苯丁烷类化合物及其衍生物的前体化合物。前期工作从虎杖中分离出苯亚甲基丙酮合酶BAS(PcPKS2)和1个具有CHS和BAS活性的双功能酶(PcPKS1)。两者与超家族其他成员序列经比较,在包括门卫氨基酸Phe215和Phe265在内的重要氨基酸序列存在一定差异。已有蛋白晶体学研究结果表明,PKSs家族不同成员的功能多样性来自于酶催化位点的非常微小的构象变化。为了能够从结构上比较PcPKS2和Pc PKS1双功能酶活性差异可能产生的机制,以确定其高效BAS活性的分子机理,研究利用了大肠杆菌原核表达系统过量表达了C-端融合有His6标签的重组蛋白,经纯化得到了高纯度蛋白。经过对其晶体生长条件进行摸索和优化,得到了能用于X-射线衍射的单晶,为其结构解析、催化机理研究、了解虎杖聚酮类化合物生物合成机制和该类酶在基因工程中的应用提供了基础。  相似文献   

12.
Previous work has shown that the xylem of seed plants follows Murray's law when conduits do not provide structural support to the plant. Here, compliance with Murray's law was tested in the stem photosynthesizer Psilotum nudum, a seedless vascular plant. Psilotum nudum was chosen because the central stele does not provide structural support, which means that Murray's law is applicable, and because its simple shoot structure resembles the earliest vascular plants. Murray's law predicts that the sum of the conduit radii cubed (Σr(3)) should decrease in direct proportion with the volume flow rate (Q) to maximize the hydraulic conductance per unit vascular investment. Agreement with Murray's law was assessed by estimating the transpiration rate distal to a cross-section, which should determine Q under steady state conditions, and comparing that with the Σr(3) of that cross-section. As predicted, regressions between the Σr(3) of the cross-section and Q resulted in a linear relationship with a y-intercept that was not different from zero. Two more rigorous statistical tests were also unable to reject Murray's law. Psilotum nudum plants also increased their conductance per investment by having more conduits distally than proximally, which is more efficient hydraulically than equal or declining conduit numbers distally.  相似文献   

13.
The starter unit used in the biosynthesis of daunorubicin is propionyl coenzyme A (CoA) rather than acetyl-CoA, which is used in the production of most of the bacterial aromatic polyketides studied to date. In the daunorubicin biosynthesis gene cluster of Streptomyces peucetius, directly downstream of the genes encoding the beta-ketoacyl:acyl carrier protein synthase subunits, are two genes, dpsC and dpsD, encoding proteins that are believed to function as the starter unit-specifying enzymes. Recombinant strains containing plasmids carrying dpsC and dpsD, in addition to other daunorubicin polyketide synthase (PKS) genes, incorporate the correct starter unit into polyketides made by these genes, suggesting that, contrary to earlier reports, the enzymes encoded by dpsC and dpsD play a crucial role in starter unit specification. Additionally, the results of a cell-free synthesis of 21-carbon polyketides from propionyl-CoA and malonyl-CoA that used the protein extracts of recombinant strains carrying other daunorubicin PKS genes to which purified DpsC was added suggest that this enzyme has the primary role in starter unit discrimination for daunorubicin biosynthesis.  相似文献   

14.
查尔酮合成酶(CHS)超基因家族又称为植物类型III聚酮合酶超基因家族, 其编码酶通过催化和合成一系列结构多样及生理活性各异的次生代谢物, 在植物生长发育和适应环境的过程中扮演着重要角色。为全面了解CHS超基因家族在植物中的进化规律, 重建其进化历史, 该研究利用14种具有全基因组数据的代表植物, 通过生物信息学手段, 深入挖掘和分析了不同植物类群基因组中查尔酮合成酶超基因家族的成员构成, 推测了其可能的扩增机制和功能分歧, 并探讨了该超基因家族在植物中的总体进化趋势。结果共识别144条具有表达信息的同源序列, 它们全部来自9种陆生植物的基因组, 藻类植物基因组中没有发现相关序列。系统发育和进化分析表明, CHS超基因家族的起源古老, 它们可能为适应复杂的生态环境而出现在早期的陆生植物中, 之后在长期的进化过程中不断发生谱系的特异扩张和拷贝丢失, 最后通过功能分歧的形式在不同植物类群中被分别固定。此外, 进化检验也显示, 尽管CHS超基因家族内部发生了多样的遗传改变, 但整个超基因家族仍处于强烈的纯化选择之下, 并且个体基因中也无任何单氨基酸位点受到正向选择的影响。  相似文献   

15.
Liu B  Raeth T  Beuerle T  Beerhues L 《Planta》2007,225(6):1495-1503
Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.  相似文献   

16.
Perforation plates are reported in aerial and subaerial axes of Psilotum nudum and in aerial axes of Tmesipteris obliqua. In Psilotum, both perforations lacking pit membranes and perforations with pit membrane remnants were observed. Perforation plates in Psilotum may consist wholly of one type or the other. In Tmespteris, perforations have threadlike pit membranes or consist of porose pit membranes. Wide perforations alternating with narrow pits, a conformation observed in various ferns, were observed in Psilotum (subaerial axes). In Psilotum, perforations are more common in metaxylem than in protoxylem; perforations in protoxylem consist of primary wall areas containing small circular porosities or relatively large circular to oval perforations. There are no modifications in the secondary wall framework of protoxylem or metaxylem in Psilotum or Tmesipteris that would permit one to distinguish presence of perforations or perforation plates with light microscopy, and scanning electron microscopy (SEM) is required for demonstration of porose walls or perforations. The tracheary elements of the Psilotaceae studied have no features not also observed in other ferns with SEM.  相似文献   

17.
Abe I  Utsumi Y  Oguro S  Noguchi H 《FEBS letters》2004,562(1-3):171-176
A cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes. Further, homology modeling predicted that the 43-kDa protein has the same overall fold as CHS. This provides new insights into the catalytic functions of type III PKSs, and suggests further involvement in the biosynthesis of plant polyketides.  相似文献   

18.
In mixing experiments with extracts derived from two cell lines of Daucus carota tissue cultures with and without chalcone synthase activity, strong inhibition of chalcone synthase (CHS) became obvious. This inhibition was due to the presence of a heatlabile protein in extracts from cells devoid of CHS activity. This protein was partially purified and identified as 3'-nucleotidase (EC 3.1.3.6). Inhibition was also observed in the presence of purified 3'-nucleotidase from Lolium multiflorum. The phosphate group in the 3'-position of adenosine, a part of the CoA thioester substrates of CHS, was hydrolyzed by this enzyme. The dephosphorylated form of malonyl-CoA was no longer a substrate, whereas 4-coumaryl-3'-dephospho-CoA as well as 4-coumaryl-CoA was still able to act as a primer for the CHS reaction. Further studies showed that malonyl-3'-dephospho-CoA was an efficient CHS inhibitor. On the other hand, CoA-SH lost its inhibitory activity after dephosphorylation in the 3'-position. These results are discussed with respect to the mechanism of chalcone synthesis.  相似文献   

19.
Flavonoid metabolons (weakly‐bound multi‐enzyme complexes of flavonoid enzymes) are believed to occur in diverse plant species. However, how flavonoid enzymes are organized to form a metabolon is unknown for most plant species. We analyzed the physical interaction partnerships of the flavonoid enzymes from two lamiales plants (snapdragon and torenia) that produce flavones and anthocyanins. In snapdragon, protein–protein interaction assays using yeast and plant systems revealed the following binary interactions: flavone synthase II (FNSII)/chalcone synthase (CHS); FNSII/chalcone isomerase (CHI); FNSII/dihydroflavonol 4‐reductase (DFR); CHS/CHI; CHI/DFR; and flavonoid 3′‐hydroxylase/CHI. These results along with the subcellular localizations and membrane associations of snapdragon flavonoid enzymes suggested that FNSII serves as a component of the flavonoid metabolon tethered to the endoplasmic reticulum (ER). The observed interaction partnerships and temporal gene expression patterns of flavonoid enzymes in red snapdragon petal cells suggested the flower stage‐dependent formation of the flavonoid metabolon, which accounted for the sequential flavone and anthocyanin accumulation patterns therein. We also identified interactions between FNSII and other flavonoid enzymes in torenia, in which the co‐suppression of FNSII expression was previously reported to diminish petal anthocyanin contents. The observed physical interactions among flavonoid enzymes of these plant species provided further evidence supporting the long‐suspected organization of flavonoid metabolons as enzyme complexes tethered to the ER via cytochrome P450, and illustrated how flavonoid metabolons mediate flower coloration. Moreover, the observed interaction partnerships were distinct from those previously identified in other plant species (Arabidopsis thaliana and soybean), suggesting that the organization of flavonoid metabolons may differ among plant species.  相似文献   

20.
Chen  Shuai  Pan  Xuhao  Li  Yiting  Cui  Lijie  Zhang  Yinchao  Zhang  Zhiming  Pan  Guangtang  Yang  Jun  Cao  Peijian  Yang  Aiguo 《Journal of Plant Growth Regulation》2017,36(2):374-384
Journal of Plant Growth Regulation - Chalcone synthase (CHS, EC 2.3.1.74) is a member of the plant polyketide synthase superfamily; it catalyzes the first committed step in the flavonoid...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号