首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproductive cycles were studied in a group of tame Père David's deer hinds. The non-pregnant hind is seasonally polyoestrous and, in animals studied over 2 years, the breeding season began in early August (2 August +/- 3.3 days; s.e.m., N = 9) and ended in mid-December (18 December +/- 5.7 days; N = 8) and early January (6 January +/- 3.2 days; N = 11) in consecutive years. During the anoestrous period, plasma progesterone concentrations were low (0.2 +/- 0.01 ng/ml) or non-detectable. There was a small, transient increase in progesterone values before the onset of the first cycle of the breeding season. In daily samples taken during an oestrous cycle in which hinds were mated by a marked vasectomized stag, progesterone concentrations remained low (less than 0.5 ng/ml) for a period of about 6 days around the time of oestrus, showed a significant increase above oestrous levels by Day 4 (Day 0 = day of oestrus) and then continued to increase for 18 +/- 2.8 days to reach mean maximum luteal levels of 3.5 +/- 0.6 ng/ml. The plasma progesterone profiles from a number of animals indicated that marking of the hinds by the vasectomized stag did not occur at each ovulation during the breeding season and therefore an estimate of the cycle length could not be determined by this method. In the following year, detection of oestrus in 5 hinds was based on behavioural observations made in the absence of the stag. A total of 19 oestrous cycles with a mean length of 19.5 +/- 0.6 days was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Concentrations of progesterone in peripheral plasma of red deer hinds were basal (less than 1 ng/ml) during lactation/seasonal anoestrus, but increased abruptly at the onset of the breeding season. Lactating hinds (N = 19) started ovarian cycles 10 days later (P less than 0.01) and conceived 16 days later (P less than 0.001) than did 13 weaned hinds. There was no evidence, from plasma progesterone values, of silent oestrus at the start of the season. Progestagen/PMSG treatment induced early ovulations in 8 anoestrous hinds but fertility was low, only 2 conceiving and giving birth. Pregnant hinds (N = 42) had high plasma concentrations of progesterone (mean 3-5 ng/ml) which declined just before parturition.  相似文献   

3.
Ott RS  Nelson DR  Hixon JE 《Theriogenology》1980,13(2):183-190
Serum progesterone concentrations and behavioral estrus were determined in two groups of 17 mixed breed dairy does at the beginning of the breeding season. The treatment group was pastured adjacent to two mature bucks while two teaser bucks ran with the group. The control group was pastured without exposure to bucks. Goats were observed for estrus daily for 35 days and samples of jugular blood were collected every other day for radioimmunoassay of progesterone. Signs of estrus were observed in 16 of 17 does in the treatment group within a mean +/- S.E. of 5.5 +/- 1.3 days after introduction of the bucks. Thirteen does demonstrated a progesterone profile characteristic of a normal estrous cycle with peak progesterone concentrations of 5.9 +/- 0.5 ng/ml. Signs of behavioral estrus were not observed in the control group. One control doe demonstrated a progesterone profile characteristic of a normal estrous cycle attaining a peak progesterone concentration of 3.9 ng/ml. Progesterone concentrations in the remaining 16 control does were at or near the lower limits of sensitivity of the assay for the duration of the experiment. Fifteen of the control does exhibited estrus within 7 +/- 1.5 days after exposure to bucks at the end of the experiment. These results clearly demonstrated a profound influence of the male on estrous cycle activity during the beginning of the breeding season.  相似文献   

4.
Père David's deer hinds were treated with GnRH, administered as intermittent i.v. injections (2.0 micrograms/injection at 2-h intervals) for 4 days, or as a continuous s.c. infusion (1.0 micrograms/h) for 14 days. These treatments were given early (February-March) and late (May-June) in the period of seasonal anoestrus. The administration of repeated injections of GnRH increased mean LH concentrations from pretreatment values of 0.54 +/- 0.09 to 2.10 +/- 0.25 ng/ml over the first 8 h of treatment in early anoestrus, and from 0.62 +/- 0.11 to 2.73 +/- 0.49 ng/ml in late anoestrus. The mean amplitude of GnRH-induced LH episodes was greater (P less than 0.01) in late (4.03 +/- 0.28 ng/ml) than in early (3.12 +/- 0.26 ng/ml) anoestrus, but within each replicate (early or late anoestrus), neither mean LH episode amplitude nor mean plasma LH concentrations differed significantly between the four periods of intensive blood sampling. On the basis of their progesterone profiles, 6/12 hinds had ovulated in response to treatment with injections of GnRH (1/6 in early anoestrus and 5/6 in late anoestrus), and oestrus and a preovulatory LH surge were recorded in all of these animals. Oestrus and a preovulatory LH surge were also recorded in one other animal treated in early anoestrus in which progesterone concentrations remained low. The mean times of onset of oestrus (91.0 +/- 1.00 and 62.4 +/- 0.98 h) and of the preovulatory LH surge (85.8 +/- 3.76 and 59.4 +/- 0.25 h) both occurred significantly earlier (P less than 0.001) in animals treated in late anoestrus. Continuous infusion of GnRH to seasonally anoestrous hinds resulted in an increase in mean plasma LH concentrations, but this response did not differ significantly between early (2.15 +/- 0.28 ng/ml) and late (2.48 +/- 0.26 ng/ml) anoestrus. Ovulation, based on progesterone profiles, occurred in 2/7 hinds in early anoestrus and in 4/6 hinds in late anoestrus. Oestrus was detected in all except one of these hinds. The mean time of onset of oestrus occurred earlier in animals treated in late anoestrus (66.2 +/- 0.32 h and 46.7 +/- 0.67 h, P less than 0.01). The administration of GnRH, given either intermittently or continuously, will induce ovulation in a proportion of seasonally anoestrous Père David's deer. However, more animals ovulate in response to this treatment in late than in early anoestrus (75% compared with 23%).  相似文献   

5.
The present study investigated the peripheral plasma inhibin levels in relation to 1) the stage of estrous cycle and the effect of climatic variations. Blood samples were collected from cyclic buffalo (n=5) once daily for 32 consecutive days during the tropical hot humid (summer) and cold (winter) seasons. Estrus was recorded by parading a vasectomized bull as well as by plasma progesterone determination. In the winter season, peripheral inhibin concentrations which were lowest (0.35 +/- 0.02 ng/ml) during the mid-luteal phase of estrous cycle (Day 6 to Day 14, Day 0 = day of estrus) increased significantly (P < 0.02) to 0.47 +/- 0.04 ng/ml during the late luteal phase (Day -4 to Day -2) and then further to 0.52 +/- 0.03 ng/ml (P< 0.02) during the periestrus phase (Day -1 to Day 1). Inhibin concentrations then decreased significantly (P < 0.02) to 0.40 +/- 0.03 ng/ml during the early luteal phase (Day 2 to Day 5). In the summer season the differences in peripheral inhibin concentrations among different phases of estrous cycle were found to be nonsignificant. A comparison of the circulating inhibin concentrations between the two seasons indicated that inhibin concentrations were significantly higher in the late luteal phase (P < 0.01) and periestrus phase (P < 0.05) during the winter season compared with corresponding periods during the summer season. The present study suggests that peripheral inhibin concentrations change in the estrous cycle during cooler breeding season and that environmental heat stress can cause a reduction in peripheral inhibin concentrations.  相似文献   

6.
In the present study, pregnancy and the estrous cycle were monitored in captive brown brocket deer (Mazama gouazoubira) by measuring fecal progestagens with a commercial enzyme immunoassay (EIA), along with behavioral data. Fecal samples were collected twice a week during pregnancy and daily during the estrous cycle and post-partum period. It was possible to distinguish between inter-luteal and luteal phases of the estrous cycle. Behavioral estrus corresponded with low concentrations of fecal progestagens. Samples from two consecutive cycles were available from five hinds, and the mean estrous cycle (n=10) was 26.9+/-1.7 d (mean+/-S.E.M.). However, when two extreme cycles (34 and 37 d) were deleted, the mean estrous cycle was 24.7+/-1.2 d. Three animals became pregnant (gestation ranged from 208 to 215 d). After fertile breeding, progestagen concentration in these hinds remained among luteal phase concentrations throughout pregnancy, with the exception of a few peaks. Within 4 d post-partum, two hinds reached interluteal phase values, while one hind maintained luteal concentrations for at least 1 week.  相似文献   

7.
This study characterized the seasonal pattern of luteal cyclicity in Iberian red deer (n=16), by measuring plasma progesterone concentrations in hinds (female red deer) twice per week from calving (May and June) 1996 until May 1997. In eight of these hinds we also examined plasma prolactin profiles to assess seasonal responses to photoperiod. Plasma progesterone concentration in the 16 hinds studied indicated that the reproductive pattern is seasonal, and lasts for 5.73 +/- 0.27 months. After calving, progesterone levels remained basal (no luteal activity) for several months, except in a hind that lost her calf just after calving, and thus did not have to suckle it. This hind showed two consecutive estrus cycles in the month following calving, which suggests that suckling has an inhibiting effect on the resumption of ovarian activity. These results also showed that as long as the hinds do not become pregnant, they show between 5 and 10 estrus cycles per reproductive season (8.06 +/- 0.35), ranging between 105 and 249 days from onset of the first cycle to end of the last one. Uninterrupted cycling lasted for 3.5-6.4 months (mean, 4.6 +/- 0.24). Cyclic luteal activity was found from October to February in all hinds, with a smaller, but notable proportion in September (56.25%) and March (68.8%), whereas it was negligible in the remaining period. Our results show a reproductive season similar to or longer than that recorded by other authors. Prolactin plasma concentrations showed a yearly trend following that of photoperiod, with peak concentrations from April to July, a decrease in August, minimal concentrations from September to February and a sharp increase in March.  相似文献   

8.
The effects of repeated laparoscopic surgery on the length of the bovine estrous cycle, estrus, ovulation and corpus luteum function were determined after one estrous cycle of normal duration (18 to 24 days). Five, Angus x Hereford cows were subjected to laparoscopy on days 5, 13, 18 and 20 (estrus = day 0) of the subsequent cycle. Blood was collected daily during the cycle in which laparoscopy was performed (surgical cycle) and during the next cycle (postsurgical cycle). Lengths of the surgical and postsurgical cycles (22.3 +/- .5 days and 21.5 +/- .6 days, respectively) did not differ (P>.05) from that of the presurgical cycle (21.8 +/- .2 days). Average concentrations (ng/ml) of LH and progesterone in serum were similar during the surgical and postsurgical cycles (1.2 +/- .1, 2.2 +/- .2 vs 1.3 +/- .2 and 2.3 +/- .1). Progesterone concentrations remained above 1 ng/ml for 17 and 16 days during the surgical and postsurgical cycles, respectively. A pre-ovulatory rise in LH, along with estrus and ovulation was confirmed in all animals. Follicular development, characterized by follicular volume, increased progressively from days 5 to 20, with the largest increase occurring between days 13 and 18. These results indicate that laparoscopy, used at the times and frequency specified, does not alter reproductive function of cyclic cows and can provide information on ovarian activity.  相似文献   

9.
Ovarian and behavioral cyclicity were studied during 3-5 estrous cycles in a group of 10 multiparous, Nubian does. Changes in ovarian morphology throughout the estrous cycle were identified and photographed laparoscopically. Forty-eight estrous cycles were observed during the study and of these, 21 were abnormally short in duration (mean +/- SEM, 6.5 +/- 0.5 days). Mean duration of the estrous cycle for the 27 normal length cycles was 21.5 +/- 0.8 days. Eighteen/21 (86%) of the short cycles and 6/27 (22%) of the normal cycles were initiated during early breeding season (between September 1st and October 15th). There were no differences (P greater than 0.05) in the duration of estrus for the short (mean, 2.9 +/- 0.3 days) and normal (mean, 2.8 +/- 0.8 days) cycle groups. A total of 6/11 (55%) of the short duration cycles examined laparoscopically appeared to be anovulatory, but ovulation was observed in all normal cycles examined. The number of corpora lutea (CL) observed during normal length and short estrous cycles was 3.1 +/- 0.2 and 2.2 +/- 0.2, respectively (P less than 0.01). The cumulative percentage of does that showed morphological evidence of ovulation by the first, second and fifth day after the onset of estrus was 30%, 60% and 100%, respectively. Based on distinct differences in morphology and development, 2 types of CL were identified. The maximum visible diameter of Type I and Type II CL was 9.4 +/- 0.6 mm and 5.1 +/- 0.5 mm, respectively. These data document ovarian morphology throughout the normal and abnormal duration estrous cycle of the goat and indicate that 1) short estrous cycles observed early in the breeding season are associated with prematurely regressing CL or anovulation and 2) the ovary produces 2 morphologically distinct types of CL which differ not only in size and appearance, but also potentially in postovulatory function and longevity.  相似文献   

10.
在1997~2000年间,甘肃兴隆山麝场的圈养马麝发情交配的时间节律保持相对年间恒定,1996年麝场进行了大规模的圈群间动物调整,导致该年的马麝圈群进入发情较迟,发情持续时间也较其他年份长。总体上,圈养马麝的发情持续时间达3个月,而66%的的发情交配发生于1个月内(从11月21日~12月21日),发情季节(75%的发情完成累计时间)长36天。雌性圈养马麝发情的时间格局受圈养环境的季节性因子影响。饲养人员的饲养风格及各个饲养区内雌性马麝的社会行为的调节效应,各饲养区动物的发情时间格局有显著差异。年龄可影响马麝的发情交配,5.5岁龄以上的马麝发情定时更早。上一年度的繁殖成功与否和当年动物发情迟早无显著相关。野捕圈养麝群和其F1代圈群间的发情时间格局无显著差异。有较多发情周期的个体并不比发情周期仅1~2次的个体更早进入发情。  相似文献   

11.
An investigation was conducted to establish the effects of harmattan and hot-dry season on estrous cycle length, onset, and duration of estrus in Yankasa sheep indigenous to the Nigerian guinea savanna zone. Mean cycle lengths were 16.8 +/- 0.58 and 16.4 +/- 0.53 days during harmattan and hot-dry seasons, respectively; short cycles, 5-13 days, and long cycles, 21 to 30 days, were observed during both seasons. During the harmattan season, 57.1% of estrus began at night while 70% started at night during the hot-dry season. The duration of normal estrus observed during the harmattan, 33.6 +/- 5.87h, significantly decreased (P0.05) during the hot-dry season (24.0 +/- 5.45h). It is suggested that twice daily observation at 12-hour intervals will suffice to detect estrus in this breed of sheep.  相似文献   

12.
The goals of this study were to develop and validate a radioimmunoassay (RIA) for measurement of unconjugated progesterone (P) concentrations in the urine of red howler monkeys (Alouatta seniculus) and to use urinary P profiles to characterize the reproductive cycle of this species. Analysis of P profiles from two females provided a preliminary estimate of the length of the estrous cycle (mean days +/- S.E.M. = 29.5 +/- 1.5; n = 2), and indicated that one female red howler copulated throughout two apparent estrous cycles. Urinary P concentrations during two confirmed pregnancies (211.8 +/- 29.7 ng P/ml) were higher (P < 0.05) than during the luteal phase (77.4 +/- 10.6 ng P/ml; n = 4) of the cycle.  相似文献   

13.
From 17 February 1987 (Day 1) to 5 June 1988 (Day 475), 6 red deer hinds which had been in natural daylength (NL/M) and 6 hinds which had been in continuous artificial light for the previous month (CL/M) were each given melatonin (5 mg in feed) daily at 15:00 h. Six controls (C) received unsupplemented feed. From Day 1 all hinds were in natural daylight and ovarian cyclicity was assessed from plasma progesterone concentrations. Group C first went into anoestrus on 15 March 1987 (Day 27 +/- 9.2 (s.e.m], recommenced cyclicity on 23 October (Day 249 +/- 2.3) and went into anoestrus again on 2 April 1988 (Day 411 +/- 8.7). Group CL/M first went into anoestrus 31 days earlier (P less than 0.05) on 12 February (Day -4 +/- 7.8), before the start of melatonin treatment; 4 hinds then recommenced ovarian cycles 132 days earlier (P less than 0.001) on 13 June (Day 117 +/- 5.8) and continued to cycle for a longer period than did controls. Group NL/M hinds were cyclic at the start of melatonin feeding and continued to cycle for 1 year or more (N = 6). Plasma prolactin concentrations remained suppressed (less than 20 ng/ml) for the duration of melatonin-feeding (Groups CL/M and NL/M) whereas control values (Group C) were elevated (20-120 ng/ml) between April and August (P less than 0.05). The ovarian response by hinds to melatonin therefore depends on initial reproductive status and recent photoperiodic history, and continued administration to cyclic hinds stimulates prolonged ovarian cyclicity irrespective of the time of year.  相似文献   

14.
The effects of fasting between Days 8 and 16 of the estrous cycle on plasma concentrations of luteinizing hormone (LH), progesterone, cortisol, glucose and insulin were determined in 4 fasted and 4 control heifers during an estrous cycle of fasting and in the subsequent cycle after fasting. Cortisol levels were unaffected by fasting. Concentrations of insulin and glucose, however, were decreased (p less than 0.05) by 12 and 36 h, respectively, after fasting was begun and did not return to control values until 12 h (insulin) and 4 to 7 days (glucose) after fasting ended. Concentrations of progesterone were greater (p less than 0.05) in fasted than in control heifers from Day 10 to 15 of the estrous cycle during fasting, while LH levels were lower (p less than 0.01) in fasted than in control heifers during the last 24 h of fasting. Concentrations of LH increased (p less than 0.01) abruptly in fasted heifers in the first 4 h after they were refed on Day 16 of the fasted cycle. Concentrations (means +/- SEM) of LH also were greater (p less than 0.05) in fasted (11.2 +/- 2.6 ng/ml) than in control (4.7 +/- 1.2 ng/ml) heifers during estrus of the cycle after fasting; this elevated LH was preceded by a rebound response in insulin levels in the fasted-refed heifers, with insulin increasing from 176 +/- 35 pg/ml to 1302 +/- 280 pg/ml between refeeding and estrus of the cycle after fasting. Concentrations of LH, glucose and insulin were similar in both groups after Day 2 of the postfasting cycle. Concentrations of progesterone in two fasted heifers and controls were similar during the cycle after fasting, whereas concentrations in the other fasted heifers were less than 1 ng/ml until Day 10, indicating delayed ovulation and (or) reduced luteal function. Thus, aberrant pituitary and luteal functions in fasted heifers were associated with concurrent fasting-induced changes in insulin and glucose metabolism.  相似文献   

15.
A sensitive, specific RIA was validated and used for measurement of peripheral plasma immunoreactive inhibin (irinhibin) levels during the estrous cycle in Murrah buffalo. The RIA employed an 125-I iodinated inhibin as tracer and an antiserum against dimeric inhibin. The procedure had a sensitivity of 16 pg/tube, and the nonspecific effects of buffalo plasma were compensated for by including 200 ul bullock plasma in the standards. Separation of free and bound inhibin was affected by the use of a second antibody and precipitation with polyethylene glycol. Blood samples were collected once daily for 30 d from Murrah buffalo (n = 6) during the hot month of July. Cyclic activity and estrus were confirmed by plasma progesterone determination. Peripheral plasma concentrations of ir-inhibin fluctuated between 0.40 +/- 0.07 and 0.67 +/- 0.13 ng/ml during the estrous cycle in buffalo. During the same period, plasma progesterone levels increased from 0.21 +/- 0.01 ng/ml at Day 0 to a peak of 3.30 +/- 0.72 ng/ml on Day 13, declining sharply by Day -5. Ir-inhibin levels exhibited an increase during the follicular phase, with the maximum concentration of 0.65 +/- 0.01 ng/ml occuring on the day of estrus, a decline thereafter, and no pattern during the luteal phase. The differences, however, were not statistically significant throughout the estrous cycle.  相似文献   

16.
This study examines the length of the oestrous cycle in 16 Iberian red deer females assessed by means of changes in progesterone concentrations, along with the changes in the profile of this hormone. Samples were collected three occasions per week from the week after calving (15 May to 15 June) up to May of the following year. The oestrous cycle lasted 19.57+/-0.29 days (range 10-27 d) calculated in 130 oestrous cycles examined. Progesterone titres did not rise above 0.5 ng/ml in the follicular phase, except in four samples. The maximum peak in progesterone concentration during the luteal phase remained above 1 ng/ml in most cases. Twenty-five percent of the individuals studied (4 out of 16) showed an oestrous cycle lasting shorter than the mean (15.2+/-0.30 days) before the start of the reproductive season, followed by a period of sexual inactivity. The standard progesterone profile in natural oestrous cycles rose from basal levels to those above 0.5 ng/ml four days after onset of oestrus, reached a peak of 1.71+/-0.07 ng/ml and then declined to less than 0.2 ng/ml after day 20. Following the rapid decline of progesterone after day 14, the concentration remained around the baseline level of 0.1 to 0.2 ng/ml during the immediate pre- and post-ovulatory phase of the cycle.  相似文献   

17.
The effect of an intravenous infusion of gonadotrophin releasing hormone (GnRH) on the duration of postpartum anestrus in suckled beef cows was studied. Twenty-eight, mature, suckled beef cows were assigned in equal numbers to one of four treatment groups which were based on infusion with saline or GnRH (15ug/hour for 12 hours) and stage postpartum (pp) (20 or 35 days). Serum LH and progesterone were determined by radioimmunoassay for the period which began 5 days pre-infusion and ended at 55 days postpartum (ie: 35 or 20 days post-infusion). Serum LH remained below 5ng/ml during infusion in all control cows. Peak serum LH values, times of LH peaks, and duration of LH responses (means +/- SE) during infusion were 49 +/- 12 ng/ml, 162 +/- 42 minutes and 7.8 +/- 1.3 hours for the 20 day group and 44 +/- ng/ml, 144 +/- 6 minutes, and 8.2 +/- 1.1 hours for the 35 day group respectively. Serum progesterone levels indicated that the proportion of cows showing the onset of estrous cycles within 10 days of infusion was greater in the 20 day pp GnRH group (4/7) than the 20 day pp saline group (0/7) (p < .05) but was not significantly different between the 35 day pp GnRH (4/7) and 35 day pp saline (2/6) groups. The incidence of estrus was not affected by GnRH treatment and was 37% in all cows prior to 55 days pp. It was concluded that infusions of GnRH for 12 hours at a rate of 15 ug/hour could induce estrous cycles in suckled beef cows treated at 20 days postpartum.  相似文献   

18.
Whisnant CS  Burns PJ 《Theriogenology》2002,58(6):1229-1235
Two trials were designed to test whether a single treatment with a microsphere formulation of progesterone (P) could simulate the luteal phase of the estrous cycle and lead to estrus and subsequent luteal development. The first experiment was to characterize the pattern of serum P concentrations and estrus in cows treated with a microsphere formulation (P + E) that contained 625 mg P and 50 mg estradiol (E). Four cows with palpable corpora lutea were treated with 25 mg prostaglandin F2 m. Each cow was given P + E (i.m.) 12 h later. Tail vein blood samples were taken on Days 1 and 2 following P + E treatment and then three times weekly for 24 days. Serum P increased from 0.8 +/- 0.1 ng/ml at P + E treatment to 4.7 +/- 0.6 ng/ml on Day 1, declined gradually to 4.1 +/- 0.3 ng/ml on Day 7 and then declined more rapidly to 0.6 +/- 0.1 ng/ml on Day 13. Treated cows showed estrus 16.25 +/- 0.7 days after P + E treatment. Thereafter, serum P increased beginning on Day 20 after P + E treatment, as expected following estrus. In Experiment 2, Angus and Simmental heifers (10.5-11.5 months of age) were administered i.m. either the vehicle (controls), E (50 mg), P (625 mg) or P + E (n = 13 per group). While treatment with E resulted in behavioral estrus (1-2 days after treatment) in each treated heifer, it did not (P > 0.5) initiate estrous cycles as indicated by subsequent increased serum P. In contrast, the P and P + E treatments increased (P < 0.05) the proportion (11/13) of heifers that showed estrus by 21 days after treatment followed by elevated serum P. We conclude that the microsphere formulation of P simulated the pattern of serum P concentrations during the luteal phase of the estrous cycle and initiated estrous cycles in peripubertal heifers with or without E.  相似文献   

19.
Brahman (Bos indicus) cows, were selected at 28+/-10 days after calving and analyzed by real time rectal ultrasonography three times a week, in order to evaluate and compare follicular and corpus luteum development during postpartum (PP) anestrus and the first PP estrous cycle under sylvopastoril conditions. Suckling (S, n=11) or non-suckling (NS, n=5) cows were evaluated in a zone of tropical dry forest (450m of altitude, mean temperature=27 degrees C, annual rainfall=1000mm). Estrous detection was performed twice daily by direct observation. Progesterone was quantified using RIA. From 28+/-10 days postcalving to resumption of estrous cycles, there were no differences (P>0.05) between NS and S cows for diameter of the dominant or first subordinate follicle, follicular growth rate, or interdominance interval. Silent ovulation, corpus luteum formation and subsequent progesterone concentrations ranging from 0.3 to 9. 7ng/ml, were found in both groups. The first calving to ovulation and calving to standing estrus intervals were shorter (P<0.01) in NS (34.8+/-5.81 and 41.2+/-9.03 days) than in S (65+/-4.82 and 81+/-6. 21 days) cows. Follicular development and progesterone concentrations during the first PP estrous cycle did not differ (P>0. 05) between NS and S cows. These results suggest that Brahman cows could have an early PP resumption of follicular recruitment if fed under sylvopastoril system conditions. However, non-suckled cows did have an earlier standing estrus and ovulation than did suckled cows.  相似文献   

20.
Estrogen and progesterone concentrations in milk during the estrous cycle were estimated in 18 normally cycling Holstein dairy cows. The estrogen and progesterone concentrations in milk during the estrous cycle followed the pattern described for them in blood in the corresponding period. During most of the estrous cycle, estrogen concentration remained at approximately 200 pg/ml and reached a proestrous peak of 360 +/- 127 pg/ml on day 19. The progesterone concentration in milk during the estrous cycle increased to a peak on day 13 (45.5 +/- 6.6 ng/ml) and thereafter declined towards estrus. Estrus detection/prediction based on milk progesterone concentrations appears feasible in view of the significant differences in milk progesterone concentrations between the early luteal (post-ovulatory), luteal and rapid follicular growth periods of the estrous cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号