首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method to discriminate G1, S, G2, M, and G1 postmitotic cells   总被引:1,自引:0,他引:1  
A new flow cytometric method combining light scattering measurements, detection of bromodeoxyuridine (BrdU) incorporation via fluorescent antibody, and quantitation of cellular DNA content by propidium iodide (PI) allows identification of additional compartments in the cell cycle. Thus, while cell staining with BrdU-antibodies and PI reveals the G1, S, and G2 + M phases of the cell cycle, differences in light scattering allow separation of G2 phase cells from M phase cells and subdivision of G1 phase into two compartments, i.e., G1A representing postmitotic cells which mature to G1B cells ready to initiate DNA synthesis. The method involves fixation of cells in 70% ethanol, extraction of histones with HC1, and thermal denaturation of DNA. This treatment appears to enhance the differences in chromatin structure of cells in the various phases of the cell cycle to the extent that cells could be separated on the basis of the 90 degrees scatter. Mitotic cells show much lower scatter than G2 phase cells, and G1 postmitotic cells (G1A) show lower scatter than G1 cells about to enter the S phase (G1B). Light scattering is correlated with chromatin condensation, as judged by microscopic evaluation of cells sorted on the basis of light scatter. The method has the advantage over the parental BrdU/DNA bivariate analysis in allowing the G2 and M phases of the cell cycle to be separated and the G1 phase to be analyzed in more detail. The method may also allow separation of unlabeled S phase cells from mitotic cells and distinguish between labeled and unlabeled mitotic cells.  相似文献   

2.
The genus Piper belongs to the Piperaceae family, and includes species of commercial and medicinal importance. Chemical studies on Piper species resulted in the isolation of several biologically active molecules, including alkaloid amides, such as piplartine. This molecule, isolated from Piper tuberculatum, has significant cytotoxic activity against tumor cell lines, and presents antifungal, anti-platelet aggregation, anxiolytic, and antidepressant effects. In order to understand the biological properties of piplartine, this study investigated the genotoxicity and the induction of apoptosis by piplartine in V79 cells and its mutagenic and recombinogenic potential in Saccharomyces cerevisiae. Piplartine induced dose-dependent cytotoxicity in S. cerevisiae cultures in either stationary -- or exponential growth phase. In addition, piplartine was not mutagenic when cells were treated during exponential-growth phase and kept in buffer solution, but it increased the frequencies of point, frameshift, and forward mutations when cells were treated in medium during growth. Piplartine treatment induced DNA strand breaks in V79 cells, as detected by neutral and alkaline comet assay. In cell cycle analysis, piplartine induced G2/M cell cycle arrest, probably as a consequence of the DNA damage induced and repair. Moreover, piplartine treatment induced apoptosis in a dose-dependent manner, as observed by a decrease in mitochondrial membrane potential and an increase in internucleosomal DNA fragmentation. These data suggest that the DNA damage caused by piplartine induces G2/M cell cycle arrest, followed by apoptosis. Moreover, we suggest that cells surviving piplartine-induced DNA damage can accumulate mutations, since this alkaloid was mutagenic and recombinogenic in S. cerevisiae assays.  相似文献   

3.
This study was directed at correlating the expression of class I MHC determinants with different segments of the cell cycle by using dual laser flow microfluorometry to measure levels of both DNA and cell surface H-2Kd or H-2Dd determinants for single cells. Con A-treated mouse spleen cells were identified as being in the G2/M or G0/G1 phases of the cell cycle on the basis of propidium iodide or Hoechst 33342 dye bound to DNA. Monoclonal anti-H-2 antibodies, indirectly fluoresceinated with goat anti-mouse IgG, were used to detect MHC determinants. The average level of both Kd and Dd determinants expressed by G2/M cells was about 1.6-fold higher than that expressed by G0/G1 cells. These observations indicate that the average-size G0/G1 and G2/M cells have the same apparent surface density of Kd and Dd determinants, insofar as we estimate that these cells differ in surface area by a factor of about 1.5. We also analyzed the expression of Kd and Dd determinants by measuring how they changed as a function of the intensity of forward light scatter from cells. For both G2/M and G0/G1 cells, changes in light scatter intensity were associated with parallel changes in levels of Dd and Kd determinants, indicating a common mechanism(s) that controls their cell surface expression.  相似文献   

4.
An immunofluorescent staining procedure has been developed to identify, with flow cytometry, replicating cells of Saccharomyces cerevisiae after incorporation of bromodeoxyuridine (BrdUrd) into the DNA. Incorporation of BrdUrd is made possible by using yeast strains with a cloned thymidine kinase gene from the herpes simplex virus. An exposure time of 4 min to BrdUrd results in detectable labeling of the DNA. The BrdUrd/DNA double staining procedure has been optimized and the flow cytometry measurements yield histograms comparable to data typically obtained for mammalian cells. On the basis of the accurate assessment of cell fractions in individual cell cycle phases of the asynchronously growing cell population, the average duration of the cell cycle phases has been evaluated. For a population doubling time of 100 min it was found that cells spend in average 41 min in the replicating phase and 24 min in the G2+M cell cycle period. Assuming that mother cells immediately reenter the S phase after cell division, daughter cells spend 65 min in the G1 cell cycle phase. Together with the single cell fluorescence parameters, the forward-angle light scattering intensity (FALS) has been determined as an indicator of cell size. Comparing different temporal positions within the cell cycle, the determined FALS distributions show the lowest variability at the beginning of the S phase. The developed procedure in combination with multiparameter flow cytometry should be useful for studying the kinetics and regulation of the budding yeast cell cycle.  相似文献   

5.
We have explored the hypothesis that hypertrophy of vascular smooth muscle cells may be regulated, in part, by growth inhibitory factors that alter the pattern of the growth response to serum mitogens by characterizing the effects of the potent growth inhibitor, transforming growth factor-beta (TGF-beta), on both hyperplastic and hypertrophic growth of cultured rat aortic smooth muscle cells. TGF-beta inhibited serum-induced proliferation of rat aortic smooth muscle cells (ED50 = 2 pM); this is consistent with previously reported observations in bovine aortic smooth muscle cells (Assoian et al. 1982. J. Biol. Chem. 258:7155-7160). Growth inhibition was due in part to a greater than twofold increase in the cell cycle transit time in cells that continued to proliferate in the presence of TGF-beta. TGF-beta concurrently induced cellular hypertrophy as assessed by flow cytometric analysis of cellular protein content (47% increase) and forward angle light scatter (32-50% increase), an index of cell size. In addition to being time and concentration dependent, this hypertrophy was reversible. Simultaneous flow cytometric evaluation of forward angle light scatter and cellular DNA content demonstrated that TGF-beta-induced hypertrophy was not dependent on withdrawal of cells from the cell cycle nor was it dependent on growth arrest of cells at a particular point in the cell cycle in that both cycling cells in the G2 phase of the cell cycle and those in G1 were hypertrophied with respect to the corresponding cells in vehicle-treated controls. Chronic treatment with TGF-beta (100 pM, 9 d) was associated with accumulation of cells in the G2 phase of the cell cycle in the virtual absence of cells in S phase, whereas subsequent removal of TGF-beta from these cultures was associated with the appearance of a significant fraction of cycling cells with greater than 4c DNA content, consistent with development of tetraploidy. Results of these studies support a role for TGF-beta in the control of smooth muscle cell growth and suggest that at least one mechanism whereby hypertrophy and hyperploidy may occur in this, as well as other cell types, is by alterations in the response to serum mitogens by potent growth inhibitors such as TGF-beta.  相似文献   

6.
Pericardial hemolymph was obtained from American Oysters (Crassostrea virginica) and the hemocytes characterized by flow cytometry. The cells were found to have a broad unimodal size distribution with a median diameter of 7 micrometers. Total protein measured by flow cytometric fluorescence of dansylated cells also revealed a broad unimodal distribution similar to that obtained for size. The proportion of hemocytes in each stage of the cell cycle was measured using DNA-specific DAPI fluorescence. Histograms showed a single peak representing the G(0)/G(1) population. There was no evidence of S or G(2)+M phases of the cell cycle, nor was polyploidy seen. The forward and orthogonal light scatter of fixed hemocytes showed no evidence of sub-populations on the basis of cytoplasmic granularity. Thus, in terms of these parameters, oyster hemocytes appear to represent a single population exhibiting graded cellular differences.  相似文献   

7.
Flow cytometry has been used to demonstrate alterations in protein, RNA, and DNA content of cells as they traverse the cell cycle. Employing fluorescein isothiocyanate (FITC) to stain protein and propidium iodide (PI) to stain nucleic acids, multiple regions within the G1 and G2 phases of the cell cycle, in addition to the M phase, can be distinguished. In this study, cytograms of the 90 degree light scatter signal vs. PI fluorescence were remarkably similar to those of FITC fluorescence vs. PI fluorescence, suggesting a relationship between 90 degree light scatter and protein content. M-phase nuclei can be distinguished from G2-phase nuclei on cytograms of 90 degree light scatter vs. PI fluorescence. However, the percentage of mitotic nuclei obtained by this technique is less than that found by light microscopic analysis. Flow cytometric parameters of nuclei prepared by nonionic detergent (NP40) lysis in Dulbecco's PBS, Vindelov's buffer, or Pollack's hypotonic EDTA/Tris buffer were compared. The best resolution of mitotic nuclei was obtained in Pollack's buffer. However, the stainability of the M-phase nuclei is reduced, and the nuclei are located in the late S/G2 region of the single-parameter histogram.  相似文献   

8.
The genus Piper belongs to the Piperaceae family, and includes species of commercial and medicinal importance. Chemical studies on Piper species resulted in the isolation of several biologically active molecules, including alkaloid amides, such as piplartine. This molecule, isolated from Piper tuberculatum, has significant cytotoxic activity against tumor cell lines, and presents antifungal, anti-platelet aggregation, anxiolytic, and antidepressant effects. In order to understand the biological properties of piplartine, this study investigated the genotoxicity and the induction of apoptosis by piplartine in V79 cells and its mutagenic and recombinogenic potential in Saccharomyces cerevisiae. Piplartine induced dose-dependent cytotoxicity in S. cerevisiae cultures in either stationary—or exponential growth phase. In addition, piplartine was not mutagenic when cells were treated during exponential-growth phase and kept in buffer solution, but it increased the frequencies of point, frameshift, and forward mutations when cells were treated in medium during growth. Piplartine treatment induced DNA strand breaks in V79 cells, as detected by neutral and alkaline comet assay. In cell cycle analysis, piplartine induced G2/M cell cycle arrest, probably as a consequence of the DNA damage induced and repair. Moreover, piplartine treatment induced apoptosis in a dose-dependent manner, as observed by a decrease in mitochondrial membrane potential and an increase in internucleosomal DNA fragmentation. These data suggest that the DNA damage caused by piplartine induces G2/M cell cycle arrest, followed by apoptosis. Moreover, we suggest that cells surviving piplartine-induced DNA damage can accumulate mutations, since this alkaloid was mutagenic and recombinogenic in S. cerevisiae assays.  相似文献   

9.
10.
Concentrations of rotenone (ROT) that block electron flow through mitochondrial complex I (100 nM) did not significantly alter either cell viability or the growth of PW cells. However, 10- to 50-fold higher concentrations (1-5 microM) were found to induce a dose-dependent cell cycle arrest predominantly at the G2/M stage of the cycle and apoptosis. Apoptosis was dependent on the cell cycle arrest, since apoptosis but not the G2/M arrest was prevented with the broad spectrum caspase inhibitor zVADfmk. Biochemical features of apoptosis included mitochondrial cytochrome c release, reactive oxygen species generation, and the activation of procaspase 3. Thus, ROT inhibition of mitochondrial electron transport may be insufficient to induce apoptosis in PW cells. Instead, apoptosis in these cells occurs as a consequence of disruption of the cell cycle and is only indirectly dependent upon mitochondrial electron transport.  相似文献   

11.
Rotenone is a heterocyclic compound widely used as an insecticide, acaricide and piscicide. Its toxicity is mainly caused by the inhibition of mitochondrial respiratory processes and ATP production, resulting in the generation of reactive oxygen species. Reactive oxygen species can interact with DNA, RNA and proteins, leading to cell damage, followed by death. We used the Comet assay, and we analyzed chromosome aberrations, in order to evaluate the genotoxic and clastogenic effects of rotenone on the different phases of the cell cycle. Cultured human lymphocytes were treated with 1.0, 1.5 and 2.0 microg/mL rotenone during the G1, G1/S, S (pulses of 1 and 6 h), and G2 phases of the cell cycle. Rotenone induced DNA damage and was clastogenic, but the clastogenicity was detected only with treatments conducted during the G1/S and S phases of the cell cycle. Rotenone also induced endoreduplication and polyploidy in treatments made during G1, while it significantly reduced the mitotic index in all phases of the cell cycle.  相似文献   

12.
The natural polyphenolic alkanone (6)-gingerol (6G) has established anti-inflammatory and antitumoral properties. However, its precise mechanism of action in myeloid leukemia cells is unclear. In this study, we investigated the effects of 6G on myeloid leukemia cells in vitro and in vivo. The results of this study showed that 6G inhibited proliferation of myeloid leukemia cell lines and primary myeloid leukemia cells while sparing the normal peripheral blood mononuclear cells, in a concentration- and time-dependent manner. Mechanistic studies using U937 and K562 cell lines revealed that 6G treatment induced reactive oxygen species (ROS) generation by inhibiting mitochondrial respiratory complex I (MRC I), which in turn increased the expression of the oxidative stress response-associated microRNA miR-27b and DNA damage. Elevated miR-27b expression inhibited PPARγ, with subsequent inhibition of the inflammatory cytokine gene expression associated with the oncogenic NF-κB pathway, whereas the increased DNA damage led to G2/M cell cycle arrest. The 6G induced effects were abolished in the presence of anti-miR-27b or the ROS scavenger N-acetylcysteine. In addition, the results of the in vivo xenograft experiments in mice indicated that 6G treatment inhibited tumor cell proliferation and induced apoptosis, in agreement with the in vitro studies. Our data provide new evidence that 6G-induced myeloid leukemia cell death is initiated by reactive oxygen species and mediated through an increase in miR-27b expression and DNA damage. The dual induction of increased miR-27b expression and DNA damage-associated cell cycle arrest by 6G may have implications for myeloid leukemia treatment.  相似文献   

13.
A multi-staged population balance model is proposed to describe the cell cycle dynamics of myeloma cell cultivation. In this model, the cell cycle is divided into three stages, i.e., G1, S, and G2M phases. Both DNA content and cell volume are used to differentiate each cell from other cells of the population. The probabilities of transition from G1 to S and division of G2M are assumed to be dependent on cell volume, and transition probability from S to G2M is determined by DNA content. The model can be used to simulate the dynamics of DNA content and cell volume distributions, phase fractions, and substrate and byproduct concentrations, as well as cell densities. Measurements from myeloma cell cultivations, especially the FACS data with respect to DNA distribution and cell fractions in different stages, are employed for model validation.  相似文献   

14.
A mitotic cell subset has been identified with nuclear light scatter. Colcemid-treated T-47D human breast cancer cells were permeabilised, stained with ethidium bromide, and analysed by flow cytometry. Cells with G2M DNA content exhibited a unimodal distribution for DNA fluorescence and forward scatter, but two peaks were discernible with 90 degrees light scatter. A discrete low-scattering cell cluster could be distinguished from the G2 cell subset on two-dimensional contour plots of 90 degrees light scatter vs. DNA fluorescence; this cluster was reproduced by mitotic shake-off experiments and varied quantitatively with mitotic indices determined either by microscopy or by stathmokinetic cell-cycle analysis of DNA fluorescence. Cell sorting confirmed that the low-scattering cell cluster comprised predominantly metaphase and anaphase cells. Identification of mitotic cells with this one-step technique enables rapid analysis of drug-induced cell-cycle delay in cell populations with different rates of cell-cycle traverse. Hence, vincristine-induced cytostasis is shown to arise in part because of premitotic G2 arrest, whereas etoposide is shown to affect cycling cells with equal sensitivity in quiescent and activated cell populations. The use of light scatter to discriminate mitotic cells in this way facilitates analysis of drug-induced cell-cycle delay and supplements the information obtainable by conventional cell-cycle analysis.  相似文献   

15.
XN4 might induce DNA damage and apoptotic cell death through reactive oxygen species (ROS). The inhibition of proliferation of K562 and K562/G01 cells was measured by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide). The mRNA levels of NADPH oxidase 1-5 (Nox1-5) genes were evaluated by qRT-PCR. The levels of extracellular reactive oxygen species (ROS), DNA damage, apoptosis, and cell cycle progression were examined by flow cytometry (FCM). Protein levels were analyzed by immunoblotting. XN4 significantly inhibited the proliferation of K562 and K562/G01 cells, with IC50 values of 3.75±0.07 µM and 2.63±0.43 µM, respectively. XN4 significantly increased the levels of Nox4 and Nox5 mRNA, stimulating the generation of intracellular ROS, inducing DNA damage and activating ATM-γ-H2AX signaling, which increased the number of cells in the S and G2/M phase of the cell cycle. Subsequently, XN4 induced apoptotic cell death by activating caspase-3 and PARP. Moreover, the above effects were all reversed by the ROS scavenger N-acetylcysteine (NAC). Additionally, XN4 can induce apoptosis in progenitor/stem cells isolated from CML patients’ bone marrow. In conclusion, XN4-induced DNA damage and cell apoptosis in CML cells is mediated by the generation of ROS.  相似文献   

16.
17.
18.
Our previous work has reported an anti-proliferative compound from moutan cortex, paeoniflorigenone which can induce cancer-selective apoptosis. However, its anti-proliferative mechanism is still unknown. According to morphology changes (hypertrophy and flattening), we hypothesized that PFG can induce senescence or inhibit cell mitosis. Here we show that PFG can induce cellular senescence, evidenced by the expression of senescence-associated β-galactosidase, G0/G1 cell cycle arrest and permanent loss of proliferative ability, in normal TIG-1 diploid fibroblast but not cancerous HeLa cells. In cancerous HeLa cells, PFG inhibited proliferation by inducing S and G2/M cell cycle arrest and mitosis inhibition. DNA damage response was activated by PFG, interestingly the reactive oxygen species level was suppressed instead of escalated. To sum up, we report 3 new roles of PFG as, 1. inducer of premature senescence in normal TIG-1 cells, 2. inhibitor of mitosis in cancerous HeLa cells, 3. ROS scavenger.

Abbreviations: PFG: Paeoniflorigenone; ROS: reactive oxygen species; ATM: ataxia telangiectasia mutated; t-BHP: tert-butyl hydroperoxide; SA-β-gal: senescence-associatedβ-galactosidase; DNA-PKcs: DNA-dependent protein kinase; γ-H2AX: H2AX phosphoryla-tion at Ser-139  相似文献   


19.
To ascertain the activity and substrate specificity of nuclear protein kinases during various stages of the cell cycle of HeLa S3 cells, a nuclear phospho-protein-enriched sample was extracted from synchronised cells and assayed in vitro in the presence of homologous substrates. The nuclear protein kinases increased in activity during S and G2 phase to a level that was twice that of kinases from early S phase cells. The activity was reduced during mitosis but increased again in G1 phase. When the phosphoproteins were separated into five fractions by cellulose-phosphate chromatography each fraction, though not homogenous, exhibited differences in activity. Variations in the activity of the protein kinase fractions were observed during the cell cycle, similar to those observed for the unfractionated kinases. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the proteins phosphorylated by each of the five kinase fractions demonstrated a substrate specificity. The fractions also exhibited some cell cycle stage-specific preference for substrates; kinases from G1 cells phosphorylated mainly high molecular weight polypeptides, whereas lower molecular weight species were phosphorylated by kinases from the S, G2 and mitotic stages of the cell cycle. Inhibition of DNA and histone synthesis by cytosine arabinoside had no effect on the activity or substrate specificity of S phase kinases. Some kinase fractions phosphorylated histones as well as non-histone chromosomal proteins and this phosphorylation was also cell cycle stage dependent. The presence of histones in the in vitro assay influenced the ability of some fractions to phosphorylate particular non-histone polypeptides; non-histone proteins also appeared to affect the in vitro phosphorylation of histones.  相似文献   

20.
Gao F  Yi J  Yuan JQ  Shi GY  Tang XM 《Cell research》2004,14(1):81-85
Double staining flow cytometry was performed using 7-amino actinomycin D and 6-carboxy-2‘,7‘-dichlorodihydrofluorescein diacetate, to detect the level fluctuation of reactive oxygen species (ROS) during the cell cycle of normal NB4 cells. Our results showed that NB4 cells possessed higher level of ROS in G2/M phase than in G1 and S phases. Double staining flow cytometry, with TdT mediated dUTP nick end labeling (Tunel) and propidium iodide(PI), indicated that As2O3 (2μM) could induce apoptosis in NB4 cells prevailingly from G2/M phase, and this efficacy was enhanced upon co-administration of 2, 3-dimethoxy-1, 4-naphthoquinone (DMNQ) (2.5μM) which could produce the endogenous ROS. These results suggested that different ROS level in different cell cycle phases of NB4 cells might determin the selective induction of G2/M apoptosis and the cells‘ susceptibility to apoptosis by As2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号