首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To trigger an effective T cell-mediated immune response in the skin, cutaneous dendritic cells (DC) migrate into locally draining lymph nodes, where they present Ag to naive T cells. Little is known about the interaction of DC with the various cellular microenvironments they encounter during their migration from the skin to lymphoid tissues. In this study, we show that human DC generated from peripheral blood monocytes specifically interact with human dermal fibroblasts via the interaction of beta(2) integrins on DC with Thy-1 (CD90) and ICAM-1 on fibroblasts. This induced the phenotypic maturation of DC reflected by expression of CD83, CD86, CD80, and HLA-DR in a TNF-alpha- and ICAM-1-dependent manner. Moreover, fibroblast-matured DC potently induced T cell activation reflected by CD25 expression and enhanced T cell proliferation. Together these data demonstrate that dermal fibroblasts that DC can encounter during their trafficking from skin to lymph node can act as potent regulators of DC differentiation and function, and thus may actively participate in the regulation and outcome of DC-driven cutaneous immune responses.  相似文献   

2.

Background  

Formation of branching tubes is a fundamental step in the development of glandular organs. To identify extracellular cues that orchestrate epithelial tubulogenesis, we employed an in vitro assay in which EpH4-J3B1A mammary epithelial cells form spheroidal cysts when grown in collagen gels under serum-free conditions, but form branching tubules in the presence of fetal calf serum (FCS).  相似文献   

3.
BackgroundHuman dermal papilla (DP) cells and melanocytes (hMel) are central players in hair growth and pigmentation, respectively. In hair follicles (HFs), oxygen (O2) levels average 5%, being coupled with the production of reactive oxygen species (ROS), necessary to promote hair growth.Materials and MethodsDP cell and hMel proliferation and phenotype were studied under physiological (5%O2, physoxia) or atmospheric (21%O2, normoxia) oxygen levels. hMel‐DP cells interactions were studied in indirect co‐culture or by directly co‐culturing hMel with DP spheroids, to test whether their interaction affected the response to physoxia.ResultsPhysoxia decreased DP cell senescence and improved their secretome and phenotype, as well as hMel proliferation, migration, and tyrosinase activity. In indirect co‐cultures, physoxia affected DP cells’ alkaline phosphatase (ALP) activity but their signalling did not influence hMel proliferation or tyrosinase activity. Additionally, ROS production was higher than in monocultures but a direct correlation between ROS generation and ALP activity in DP cells was not observed. In the 3D aggregates, where hMel are organized around the DP, both hMel tyrosinase and DP cells ALP activities, their main functional indicators, plus ROS production were higher in physoxia than normoxia.ConclusionsOverall, we showed that the response to physoxia differs according to hMel‐DP cells interactions and that the microenvironment recreated when in direct contact favours their functions, which can be relevant for hair regeneration purposes.  相似文献   

4.
The mesenchymal-epithelial interactions that characterize the early stages of tooth and hair follicle morphogenesis share certain similarities, and there is increasing evidence that mesenchymal cells derived from both mature structures retain interactive and stem cell-like properties. This study aimed to gauge the cross-appendage inductive capabilities of cultured tooth dental papilla (or pulp) cells from different species and ages of donor. Adult human and juvenile rat tooth papilla cells were implanted into surgically inactivated hair follicles within two different microenvironments. The human cells interacted with follicle epithelium to regenerate new end bulbs and create multiple differentiated hair fibers. Rodent tooth dental cells also induced new epithelial matrix structures and stimulated de novo hair formation. However, in many instances they also elicited mineralization and bone formation, a phenomenon that appeared to relate to their donor's age; the type of tooth of origin; and the host environment. Taken together, this study reveals that cultured dental papilla cells from postnatal mammals (adult, juvenile, and newborn) retain inductive molecular signals that must be common to both hair and teeth follicles. It highlights the stem cell-like qualities and morphogenetic abilities of tooth and hair follicle cells from mature humans, and their capacity for cross-appendage and interspecies communication and interaction. Besides the developmental implications, the present findings have relevance for stem cell biology, hair growth, tissue repair, and other biotechnologies. Moreover, the critical importance of considering the local microenvironment in which different cells/tissues are naturally or experimentally engineered is firmly demonstrated.  相似文献   

5.
Four cell lines, named nonparenchymal 11 (NP11), NP26, NP31, and NP32, were established from sinusoidal endothelial cells (SECs) of rat liver. They still retained expression of receptors for vascular endothelial growth factor (VEGF), Flt-1, and kinase domain-containing receptor (KDR). NP31 and NP32 turned out to be incapable of tubulogenesis in basement membrane matrix (Matrigel), which belongs to endothelial properties, as shown by SECs in primary culture. Expression of temperature-sensitive, virally activated Ras (ts-v-Ras) restored tubulogenic behaviors back to NP31 only at permissive temperature. Matrigel induced long-lasting tyrosine phosphorylation of Shc, with recruitment of Grb-2 and microtubule-associated protein kinase (MAPK) activation in both parental NP31 and NP31 transformed by ts-v-Ras, which was blocked by anti-β1 integrin antibody. Tubulogenesis was inhibited by adenovirus-mediated expression of dominant-negative Ras in human umbilical vein endothelial cells (HUVECs). PD 098059, a selective inhibitor of MAPK kinase (MEK), nearly perfectly blocked tubulogenesis by ts-v-Ras-expressing NP31 cells at permissive temperature. Furthermore, the botulinum C3 toxin, an inhibitor for Rho, caused fragmentation of branching cords in networks formed by NP31 that expressed ts-v-Ras at permissive temperature. These data suggest that the integrin-mediated Ras signals may be necessary but are not sufficient for tubulogenesis and that an artificial expression of v-Ras might substitute for the second signal required in this system. J. Cell. Physiol. 176:223–234, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
High voltage electric pulses, 1000 V/cm, were found to induce cell fusion efficiently when delivered to cells growing in a monolayer culture. The maximum yield of fused cells was about 30% of cells remaining after treatment. Colonies of interspecies hybrid cells between mouse and others also appeared with a frequency of 3 X 10(-4) - 2 X 10(-5) after culturing fused cells in a selection medium that permits the growth of only hybrid cells. This method of electrofusion was applied for complementation analysis of DNA repair-deficient xeroderma pigmentosum cells. Efficient cell fusion was also observed with these human diploid fibroblasts and the resulting heterodikaryons showed a recovery of ultraviolet light-induced unscheduled DNA synthesis to the same extent as in normal cells.  相似文献   

7.
8.
Human epidermal keratinocytes (HEK) are skin cells of primary importance in maintaining the body’s defensive barrier and are used in vitro to assess the irritation potential and toxicity of chemical compounds. Microfluidic systems hold promise for high throughput irritant and toxicity assays, but HEK growth kinetics have yet to be characterized within microscale culture chambers. This research demonstrates HEK patterning on microscale patches of Type I collagen within microfluidic channels and maintenance of these cells under constant medium perfusion for 72 h. HEK were shown to maintain 93.0%–99.6% viability at 72 h under medium perfusion ranging from 0.025–0.4 μl min−1. HEK maintained this viability while ∼100% confluent—a level not possible in 96 well plates. Microscale HEK cultures offer the ability to precisely examine the morphology, behavior and viability of individual cells which may open the door to new discoveries in toxicological screening methods and wound healing techniques.  相似文献   

9.
Adult rat pelage follicle dermal papilla cells induced follicle neogenesis and external hair growth when associated with adult footpad skin epidermis. They thus demonstrated a capacity to completely change the structural arrangement and gene expression of adult epidermis--an ability previously undocumented for cultured adult cells. Isolation chambers ensured that de novo follicle formation must have occurred by eliminating the possibility of cellular contributions, and/or inductive influences, from local skin follicles. These findings argue against previous suggestions of vibrissa follicle specificity, and imply that the potential for hair follicle induction may be common to all adult papilla cells.  相似文献   

10.
Y Lei  OF Zouani  M Rémy  C Ayela  MC Durrieu 《PloS one》2012,7(7):e41163
Angiogenesis, the formation of new blood vessels by sprouting from pre-existing ones, is critical for the establishment and maintenance of complex tissues. Angiogenesis is usually triggered by soluble growth factors such as VEGF. However, geometrical cues also play an important role in this process. Here we report the induction of angiogenesis solely by SVVYGLR peptide micropatterning on polymer surfaces. SVVYGLR peptide stripes were micropatterned onto polymer surfaces by photolithography to study their effects on endothelial cell (EC) behavior. Our results showed that the EC behaviors (cell spreading, orientation and migration) were significantly more guided and regulated on narrower SVVYGLR micropatterns (10 and 50 μm) than on larger stripes (100 μm). Also, EC morphogenesis into tube formation was switched on onto the smaller patterns. We illustrated that the central lumen of tubular structures can be formed by only one-to-four cells due to geometrical constraints on the micropatterns which mediated cell-substrate adhesion and generated a correct maturation of adherens junctions. In addition, sprouting of ECs and vascular networks were also induced by geometrical cues on surfaces micropatterned with SVVYGLR peptides. These micropatterned surfaces provide opportunities for mimicking angiogenesis by peptide modification instead of exogenous growth factors. The organization of ECs into tubular structures and the induction of sprouting angiogenesis are important towards the fabrication of vascularized tissues, and this work has great potential applications in tissue engineering and tissue regeneration.  相似文献   

11.
BACKGROUND: Membrane potential changes in cells from the human lymphoid B cell line, JY, evoked by increasing cell density in culture were investigated, as data published on other cell types are controversial. An attempt was also made to clear the underlying mechanism. METHODS: Nonadherent JY cells were isolated from high-density plateau-phase cultures (type A cells), medium-density log-phase cultures (type B cells), and low-density lag-phase cultures (type C cells). They were analyzed for transmembrane potential, intracellular free concentration of potassium and sodium, membrane permeability for monovalent cations, cell cycle distribution by measuring DNA content, and glucose uptake. RESULTS: C type cells proved to be relatively depolarized (-41 +/- 3 mV) and cells obtained from the highest density cultures hyperpolarized (-60 +/- 3 mV). Intracellular concentrations ([K](i) = 92-97 mM and [Na](i) = 34-35 mM) were almost identical for each type of cell. The sodium/potassium permeability constant ratio in the A and C type of cells was 0.047 and 0.094, respectively. High-density culture conditions resulted in a pronounced G(1)-phase arrest. CONCLUSIONS: Differences in the membrane potential values induced by high-density culture conditions were maintained by changes in the membrane permeability for the monovalent cations.  相似文献   

12.
Adenohypophysial cells from female Wistar rats were dispersed and maintained for 4 days in primary culture in the presence of [3H]myoinositol. The effects of several releasing hormones, corticotropin-releasing factor (CRF), arginine vasopressin (AVP), angiotensin II (A II), thyrotropin-releasing hormone (TRH), and luteinizing hormone-releasing hormone (LHRH) on the liberation of labelled inositol phosphate (InsP), inositol-bisphosphate (InsP2), and inositol-trisphosphate (InsP3) from prelabelled inositol lipids were tested alone and in combination. Of the corticotropin (ACTH) secretagogues tested, AVP and A II produced a dose-dependent increase in inositol phosphate accumulation. CRF was inactive. The ED50 values of about 1 nM for both AVP and A II were close to the corresponding dissociation constants for binding to pituitary membranes: and, in the case of A II, close to the ED50 for A II-induced inhibition of pituitary membrane adenylate cyclase. The responses to A II and AVP could be inhibited by [Sar1,Ile8]A II and the AVP antagonist d(Et2)-VAVP, respectively. The magnitude of the maximal effect of AVP on accumulation of inositol phosphates was small (25% increase over basal value) suggesting that this effect was restricted to a minor subpopulation of pituitary cells (probably corticotrophes). CRF did not potentiate AVP-induced inositol phosphates accumulation. Maximal A II-induced increase in inositol phosphates accumulation represented 150% of the basal value and was partially additive with that of TRH suggesting that lactotrophes represent the main A II-sensitive subpopulation.  相似文献   

13.
An established keratinocyte line (XB), derived from a mouse teratoma, terminally differentiates in suspension culture in a manner similar to human epidermal keratinocytes. When surface-grown XB cells are placed in suspension culture, they lose colony forming ability very rapidly; within three days the loss is virtually complete. Measurement of the ability of the suspended cells to synthesize protein and RNA show that they begin to lose both after 12 hours, the rate of uridine and glycine incorporation falling nearly to zero in about 36 hours. The cells then become insoluble in ionic detergents, owing to the formation of disulfide-stabilized keratin filaments, and digest their nuclei. The total RNA content of the cells (a measure of ribosomes) begins to drop sharply about 12 hours after the cells are placed in suspension culture, and most RNA is eliminated by 24 hours. This process is independent of the presence of serum in the medium. DNA also begins to disappear from the cells, but this process is slower than ribosomal destruction and is strongly affected by the presence of serum. After seven days in the absence of serum, half the DNA still remains, and nearly all the nuclei are still visible, whereas during the same period in the presence of serum all visible nuclei and all DNA disappear. In contrast to the destructive process that takes place in the keratinocytes, 3T3 cells are much more stable in suspension culture. They show a reversible decline in their rate of amino acid incorporation, but no decline in their rate of uridine incorporation, and they undergo little loss in colony forming efficiency for several days. They retain most of their RNA and nuclei with full DNA content. The destructive process in suspended XB cells seems to be a model for the cell death that takes place in terminal differentiation of the keratinocyte.  相似文献   

14.
Using immunocytochemical and biochemical techniques, we have demonstrated that cultured human epidermal keratinocytes contain both urokinase and tissue type plasminogen activators. In subconfluent colonies the distribution of the two enzymes differed. Tissue type plasminogen activator (tPA) was distributed evenly throughout the colony, while, as we have demonstrated previously, urokinase type plasminogen activator (uPA) was preferentially localized at the migrating edges of the colony. Using zymographic analyses, both tPA and uPA activities were detected in cell extracts. Depending on the procedure used to prepare cell extracts, tPA was detected either as free enzyme or in complex with PA inhibitor type 1. PA inhibitor type 1 was deposited onto the extracellular matrix of the keratinocyte cultures and formed a complex with cell-associated tPA when cells and matrix were extracted together. The most differentiated keratinocytes in the culture, which were spontaneously shed from the culture surface, also contained both tPA and uPA. However, these spontaneously shed cells had a higher ratio of tPA:uPA than did the less differentiated cells from the same culture. In conjunction with our previous studies, these results demonstrate the complex nature of the plasminogen activator system, including enzymes and inhibitors, that is present in human keratinocytes. In addition, our data suggest that the relative amounts of uPA and tPA in epidermal cells vary with differentiation state.  相似文献   

15.
Oxysterols have been detected in various mammalian organs and blood. Biliary epithelium is exposed to high concentrations of cholesterol, and we have identified three keto-oxysterols (cholest-4-en-3-one, cholesta-4,6-dien-3-one, cholesta-3,5-dien-7-one) in human bile and gallstones. Because the effects of oxysterols on biliary physiology are not well defined, we investigated their biological effects on dog gallbladder epithelial cells. Enriched medium (culture medium containing taurocholate and lecithin and cholesterol +/- various oxysterols) was applied to confluent monolayers of dog gallbladder epithelial cells in culture. Cytotoxicity and apoptosis were studied by morphological analysis and flow cytometry. Oxysterols in the mitochondrial fraction were identified by gas chromatography/mass spectrometry, whereas release of cytochrome c from mitochondria was assayed by spectrophotometry and Western blot analysis. Compared with cells treated with culture medium or with enriched medium containing cholesterol, oxysterol-treated cells showed significantly increased apoptosis (P < 0.05). Exogenously applied oxysterols were recovered from the mitochondrial fraction. Cytochrome c release from mitochondria was increased significantly by cholest-4-en-3-one, cholesta-4,6-dien-3-one, and 5beta-cholestan-3-one (all P < 0.05). Thus oxysterols recovered from human bile and gallstones induce apoptosis of biliary epithelium via a mitochondrial-dependent pathway and may play a role in the pathogenesis of chronic inflammation and carcinogenesis in the gallbladder.  相似文献   

16.
Biological tubes form in a variety of shapes and sizes. Tubular topology of cells and tissues is a widely recognizable histological feature of multicellular life. Fluid secretion, storage, transport, absorption, exchange, and elimination—processes central to metazoans—hinge on the exquisite tubular architectures of cells, tissues, and organs. In general, the apparent structural and functional complexity of tubular tissues and organs parallels the architectural and biophysical properties of their constitution, i.e., cells and the extracellular matrix (ECM). Together, cellular and ECM dynamics determine the developmental trajectory, topological characteristics, and functional efficacy of biological tubes. In this review of tubulogenesis, we highlight the multifarious roles of ECM dynamics—the less recognized and poorly understood morphogenetic counterpart of cellular dynamics. The ECM is a dynamic, tripartite composite spanning the luminal, abluminal, and interstitial space within the tubulogenic realm. The critical role of ECM dynamics in the determination of shape, size, and function of tubes is evinced by developmental studies across multiple levels—from morphological through molecular—in model tubular organs.  相似文献   

17.
18.
Alopecia is not a critical disease; however it is a disease that can affect the quality of life. Many remedies have been developed to cure alopecia, but only two have been approved by the FDA. Due to the steadily increasing number of young alopecia patients, the need for new therapies for curing alopecia is very high. Recent studies on cell therapy have reported using technique to treat various diseases. We introduce upgraded hair cell therapy which tested hair structure inducing activity with bioartificial dermal papilla tissue. Hair follicles contain two types of stem cells: Outer root sheath cells (ORSCs) derived epithelial cells, and dermal cells (DPCs). In this study, we reconstructed DP-like tissues (DPLTs) using cultured dermal papilla cells (DPCs) from human hair follicles. The DPLTs were produced special media (Dermal Papilla Forming Media: DPFM) conditions in vitro, which can induce epithelial stands from implanted healthy hair without DP. We tested in vivo hair-inducing with a modified hair sandwich model. Two to three weeks DPLT injection into the mouse scalp skin, we observed new hair in the injected site and detected injected human cells from DPLTs and Outer Root Sheath Cells (ORSCs) in the new hair via human Alu-DNA-specific probe. In the future, reconstructed DPLTs may be used in in vitro studies of hair development and the morphogenesis mechanism, as well as in vitro studies of the efficacy and toxicity of drugs for baldness. These tissues will be used as an alternative medicine product for hair transplantation  相似文献   

19.
A major clinical problem encountered with the use of nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin is gastropathy. In this study, we examined, using guinea pig gastric mucosal cells in primary culture, how NSAIDs damage gastric mucosal cells. The short-term treatment of cells with high concentrations of indomethacin decreased cell viability in the absence of apoptotic DNA fragmentation, chromatin condensation, or caspase activation. Cells lost membrane integrity with this short-term indomethacin treatment, suggesting that indomethacin induced necrosis under these conditions. In contrast, the long-term treatment of cells with low concentrations of indomethacin decreased cell viability and was accompanied by apoptotic DNA fragmentation, chromatin condensation, and caspase activation. Pretreatment of cells with inhibitors of caspases or protein synthesis suppressed cell death caused by long-term indomethacin treatment, suggesting that apoptosis was induced when the inhibitors were not present. These results imply that NSAIDs cause gastric mucosal damage through both necrosis and apoptosis of gastric mucosal cells.  相似文献   

20.
The characterization of melanoblasts is important for understanding their in vivo development, melanoma formation, and pigment‐related disorders. However, no methods have been reported for the isolation of melanoblasts from human skin. Using a ‘calcium‐pulse’ technique, involving the differentiation of human keratinocytes with high calcium and the subsequent spontaneous separation of the epidermal sheets, we effectively isolated human melanoblasts (keratinocyte‐adapted melanoblasts, KaMBs) from keratinocyte culture. The KaMBs expressed early melanogenesis‐related genes, including BRN2, which is a known melanoblast marker. Moreover, the KaMBs displayed much higher proliferative and growth capacities than the primary melanocytes. Considering that keratinocytes might provide an in vivo‐like environment for KaMBs during isolation and in vitro culture, the ‘calcium‐pulse’ technique offers an unprecedented, easy, and efficient method for the isolation of human melanoblasts, retaining the original characteristics of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号