首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AimsTreadmill training has been shown to improve function in animal models and patients with cerebral ischemia. However, the neurochemical effects of this intervention on the ischemic brain have not been well studied. This study was designed to evaluate the effects of pre-ischemic treadmill training on the release of glutamate and γ-aminobutyric acid (GABA) from the striatum in a rat middle cerebral artery occlusion (MCAO) model.Main methodsRats were divided into five groups: sham control without MCAO, and 0, 1, 2 and 4 weeks pre-ischemic treadmill training. After training, cerebral ischemia was induced by MCAO for 120 min, followed by reperfusion. Microdialysis was used to collect dialysates from the striatum immediately before ischemia, and at 40, 80 and 120 min after ischemia, as well as at 40, 80, 120, 160, 200 and 240 min after reperfusion.Key findingsPre-ischemic treadmill training decreased glutamate release and increased GABA release during the acute phase of cerebral ischemia/reperfusion. Treadmill training for at least 2 weeks produced statistically significant changes in GABA/glutamate release.SignificanceThe present study suggests that treadmill training inhibits the excessive release of glutamate, by stimulating GABA release during the acute phase of cerebral ischemia. This may be one of the important mechanisms to protect the striatal neurons from ischemic damage.  相似文献   

2.
The aim of this study was to test the hypothesis that a decreased myocardial concentration of reduced glutathione (GSH) during ischemia renders the myocardium more susceptible to injury by reactive oxygen species generated during early reperfusion. To this end, rats were pretreated with L-buthionine-S,R-sulfoximine (2 mmol/kg), which depleted myocardial GSH by 55%. Isolated buffer-perfused hearts were subjected to 30 min of either hypothermic or normothermic no-flow ischemia followed by reperfusion. Prior depletion of myocardial GSH did not lead to oxidative stress during reperfusion, as myocardial concentration of glutathione disulfide (GSSG) was not increased after 5 and 30 min of reperfusion. In addition, prior depletion of GSH did not exacerbate myocardial enzyme release, nor did it impair the recoveries of tissue ATP, coronary flow rate and left ventricular developed pressure during reperfusion after either hypothermic or normothermic ischemia. Even administration of the prooxidant cumene hydroperoxide (20 M) to postischemic GSH-depleted hearts during the first 10 min of reperfusion did not aggravate postischemic injury, although this prooxidant load induced oxidative stress, as indicated by an increased myocardial concentration of GSSG. These results do not support the hypothesis that a reduced myocardial concentration of GSH during ischemia increases the susceptibility to injury mediated by reactive oxygen species generated during reperfusion. Apparently, myocardial tissue possesses a large excess of GSH compared to the quantity of reactive oxygen species generated upon reperfusion. (Mol Cell Biochem 156: 79-85, 1996)  相似文献   

3.
Our study evaluated the relationship between the endogenous production of prostacyclin and the antiarrhythmic effect of ischemic preconditioning against ischemic and reperfusion-induced tachyarrhythmia. Langendorff perfused rat hearts underwent 30 min regional ischemia with reperfusion. Preconditioning was induced by a single episode of 5 min ischemia and 15 min reperfusion. Prostaglandin 6-keto F1 (a stable metabolite of prostacyclin) was determined in the coronary effluent.In the control group the incidence of tachyarrhythmia was 31 % during ischemia and 67% during reperfusion. Preconditioning did not affect ischemic arrhythmias but attenuated arrhythmias a reperfusion (8%, p < 0.01) and was associated with increased release of prostacyclin prior to reperfusion. Aspirin abolished the antiarrhythmic effect of preconditioning against reperfusion tachyarrhythmias. However, no relationship was found between suppression of prostacyclin production and the occurrence of arrhythmia in individual hearts.Thus, our findings suggest that metabolites of arachidonic acid via the cyclooxygenase pathway are involved in the protective effect of ischemic preconditioning against reperfusion-induced tachyarrhythmias. (Mol Cell Biochem 160/161: 249–255, 1996)  相似文献   

4.
Background: A major mechanism underlying warm ischemia/reperfusion (I/R) injury during liver transplantation is the activation of the caspase chain, which leads to apoptosis. Recently, it was demonstrated that the release of cathepsin B, a cysteine protease, from the cytosol in liver injury induces mitochondrial release of cytochrome c and the activation of caspase-3 and -9, thereby leading to apoptosis. The aim of this study was to ascertain if cathepsin B inactivation attenuates the apoptotic injury due to I/R in mouse liver. Methods: A model of segmental (70%) hepatic ischemia was used. Eighteen mice were anesthetized and randomly divided into three groups: (1) Control group: sham operation (laparotomy); (2) Ischemic group: midline laparotomy followed by occlusion of all structures in the portal triad to the left and median lobes for 60 min (ischemic period); (3) Study group: like group 2, but with intraperitoneal administration of a pharmacological inhibitor of cathepsin B (4 mg/100 g) 30 min before induction of ischemia. Serum liver enzyme levels were measured by biochemical analysis, and intrahepatic caspase-3 activity was measured by fluorometric assay; apoptotic cells were identified by morphological criteria, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorometric assay, and immunohistochemistry for caspase-3. Results: Showed that at 6 h of reperfusion, there was a statistically significant reduction in liver enzyme levels in the animals pretreated with cathepsin B inhibitor (p < 0.05). On fluorometric assay, caspase-3 activity was significantly decreased in group 3 compared to group 2 (p < 0.0001). The reduction in postischemic apoptotic hepatic injury in the cathepsin B inhibitor -treated group was confirmed morphologically, by the significantly fewer apoptotic hepatocyte cells detected (p < 0.05); immunohistochemically, by the significantly weaker activation of caspase-3 compared to the ischemic group (p < 0.05); and by the TUNEL assay (p < 0.05). Conclusion: The administration of cathepsin B inhibitor before induction of ischemia can attenuate postischemic hepatocyte apoptosis and thereby minimize liver damage. Apoptotic hepatic injury seems to be mediated through caspase-3 activity. These findings have important implications for the potential use of cathepsin B inhibitors in I/R injury during liver transplantation.  相似文献   

5.
Discrepancy between GLUT4 translocation and glucose uptake after ischemia   总被引:4,自引:0,他引:4  
Objective: Low-flow ischemia results in glucose transporter translocation and in increased glucose uptake. After total ischemia in rat heart, we found no increase in glucose uptake. Here we test the hypothesis that total ischemia is associated with decreased activation of GLUT4 despite translocation. Methods: Isolated working hearts (n=70, Sprague–Dawley rats) were perfused for 70 min at physiological workload with Krebs–Henseleit buffer containing [2-3H]glucose (5 mmol/l, 0.05 μCi/ml) with either oleate (0.4 mmol/l, 1%BSA) or pyruvate (5 mmol/l, 1%BSA). After 20 min, hearts were subjected to 15 min of total ischemia followed by 35 min of reperfusion. We measured glucose uptake and intracellular free glucose (IFG) using [2-3H]glucose and [14C]sucrose, and determined the distribution of GLUT4 by colocalization immunofluorescence with Na–K ATP-ase. Results: Cardiac power was 10.1 ± 0.90 mW before ischemia and did not differ between groups. Recovery was the same in both groups (55.7 ± 24.8$%). Glucose uptake did not differ between groups before ischemia, and did not increase during reperfusion. Despite evidence of GLUT4 translocation after reperfusion in both groups, IFG did not increase compared with before ischemia. Conclusion: We conclude that there is a discrepancy between glucose transporter availability and glucose uptake after ischemia, which may be due to inhibition of GLUT4 in the plasma membrane. (Mol Cell Biochem 278: 129–137, 2005)  相似文献   

6.
It is well established that brief episodes of ischemia/reperfusion (I/R) [preconditioning (PC)] protect the myocardium from the damage induced by subsequent more prolonged I/R. However, the signaling pathways activated during PC or I/R are not well characterized. In this study, the role of Ras-GTPase, tyrosine kinases (TKs), epidermal growth factor receptor (EGFR) and Ca2 +/calmodulin-dependent protein kinase II (CaMK II) in mediating PC in a perfused rat heart model was investigated. A 40-min episode of global ischemia in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (Pmax) and left ventricular end-diastolic pressure (LVEDP), and impaired coronary hemodynamics, measured as coronary flow (CF) and coronary vascular resistance (CVR). PC significantly enhanced cardiac recovery after I/R. Combination of PC and FPT III (Ras-GTPase inhibitor FPT III; 232 ng/min for 6 days) treatment did not produce any additive benefits as compared to PC alone. In contrast, PC-induced improvements in cardiac function after I/R were significantly attenuated by pretreatment with genistein (1mg/kg/day for 6 days), a broad-spectrum inhibitor of TKs, or AG1478 (1mg/kg/day for 6 days), a specific inhibitor of EGFR tyrosine kinase or KN-93 (578 ng/min for 6 days), a CaMK II inhibitor, before PC. These observations suggest that PC and FPT III pretreatment may produce cardioprotection via similar mechanisms. Present results also indicate that activation of TKs and specifically activation of EGFR-mediated TKs and CaMK II-mediated regulation of calcium homeostasis are part of the PC mechanisms that improve recovery after I/R. (Mol Cell Biochem 268: 175–183, 2005)  相似文献   

7.
Helmholtz is quoted to have said that if he'd had any influence in creation he would have returned the human eye to its maker for revisions. The same could be said of the heart with its only very rudimentary ability to defend itself against ischemia. Ischemia was obviously not a problem during evolution: Early man did not live much longer than prime time for reproduction and no selection bias existed to prevent vascular diseases, an affliction of later life. In spite of this natural disadvantage of aged males the number of existing although not very efficient defense mechanisms is surprisingly large. It is the general belief that the knowledge of these mechanisms may lead to the development of new therapies that hopefully improve the imperfect product of natural selection. (Mol Cell Biochem 160/161: 209–215, 1996)  相似文献   

8.
Objective and backgroundActivation of sterile inflammation after hepatic ischemia/reperfusion (I/R) culminates in liver injury. The route to liver damage starts with mitochondrial oxidative stress and cell death during early reperfusion. The link between mitochondrial oxidative stress, damage-associate molecular pattern (DAMP) release, and sterile immune signaling is incompletely understood and lacks clinical validation. The aim of the study was to validate this relation in a clinical liver I/R cohort and to limit DAMP release using a mitochondria-targeted antioxidant in I/R-subjected mice.MethodsPlasma levels of the DAMPs high-mobility group box 1 (HMGB1), mitochondrial DNA, and nucleosomes were measured in 39 patients enrolled in an observational study who underwent a major liver resection with (N = 29) or without (N = 13) intraoperative liver ischemia. Circulating cytokine and neutrophil activation markers were also determined. In mice, the mitochondria-targeted antioxidant MitoQ was intravenously infused in an attempt to limit DAMP release, reduce sterile inflammation, and suppress I/R injury.ResultsIn patients, HMGB1 was elevated following liver resection with I/R compared to liver resection without I/R. HMGB1 levels correlated positively with ischemia duration and peak post-operative transaminase (ALT) levels. There were no differences in mitochondrial DNA, nucleosome, or cytokine levels between the two groups. In mice, MitoQ neutralized hepatic oxidative stress and decreased HMGB1 release by ±50%. MitoQ suppressed transaminase release, hepatocellular necrosis, and cytokine production. Reconstituting disulfide HMGB1 during reperfusion reversed these protective effects.ConclusionHMGB1 seems the most pertinent DAMP in clinical hepatic I/R injury. Neutralizing mitochondrial oxidative stress may limit DAMP release after hepatic I/R and reduce liver damage.  相似文献   

9.
During Langendorff perfusion of rat heart with aminocarnitine, long-chain acylcarnitine (LCAC) accumulates in heart cells, from which it is excreted by the heart. The heart function remains intact during this process. The accumulation of LCAC can be inhibited by the simultaneous addition of an inhibitor of the outer membrane carnitine palmitoyl-coenzyme A transferase (CPT-1), indicating that aminocarnitine is a specific inhibitor of the inner membrane isoenzyme (CPT-2). LCAC accumulation is associated with glycogen depletion. After 60 min perfusion with aminocarnitine, electron microscopy shows large multilamellar lipid vesicles, especially in cardiomyocytes, which are depleted in glycogen granula. Multilamellar lipid vesicles are also found in the blood vessels. Extraction of the perfusate shows the presence of LCAC, fatty acid and phosphatidylethanolamine. Morphological analysis with freeze fracturing and thin sectioning furthermore reveals that the sarcolemma is not deteriorated during the export of LCAC to the coronary vessels. Since cardiac structures and functions are intact, LCAC alone is not the clue for ischemic damage. Therefore the present work supports the hypothesis that acidosis rather than LCAC is of primary importance to ischemic damage.  相似文献   

10.
ABSTRACT

We investigated how resveratrol affects lipid oxidation during experimental renal ischemia-reperfusion injury in rats. We used 48 adult male rats assigned to five groups: group 1, control; group 2, renal ischemia; group 3, renal ischemia + reperfusion; group 4, resveratrol + renal ischemia; group 5, resveratrol + renal ischemia + reperfusion. Plasma and renal tissue malondialdehyde (MDA), and erythrocyte and renal tissue glutathione (GSH) levels were measured and histologic changes in the renal tissue were examined. Ischemia-reperfusion affected the MDA-GSH balance adversely and caused histopathological changes in the renal tissue of the ischemia and ischemia + reperfusion groups. Resveratrol treatment normalized MDA and GSH levels as well as the histopathology that occurred in the renal tissue of the ischemia and ischemia + reperfusion groups.  相似文献   

11.
Abstract Background: During myocardial ischemia, accumulation of end products from anaerobic glycolysis (hydrogen ions (H+), lactate) can cause cellular injury, consequently affecting organ function. The cells' ability to buffer H+ (buffering capacity (BC)) plays an important role in ischemic tolerance. Age related differences in myocardial lactate and H+ accumulation (one hour of ischemia) as well as differences in BC, myoglobin (Mb) and histidine (His) contents in the left (LV) and right (RV) ventricles were assessed in neonatal compared to adult pigs. The BC of the septum was also compared. Methods and Results: Neonatal RV and LV had lactate accumulations of 43% and 63% and significantly greater H+ (p < 0.004) compared to the adult. In the neonate LV, BC was 17% significantly poorer (p = 0.0001), had 33% lower Mb (p = 0.0002) and 15% lower His content (p = 0.0004) when compared to the adult. In the RV, despite similar BC between the neonate and adult, myoglobin content was 36% (p = 0.0004) lower in the neonate. The neonate septum had a BC that was 11% lower than that of the adult. With maturation, the adult LV had a BC that was 10% greater (p < 0.01) than the RV while the septum mirrored that of the LV. Conclusions: During maturation to adulthood, the BC of the septum begins to closely resemble the LV. Neonatal hearts have a potentially greater vulnerability to acid-base disturbances during ischemia in both ventricles when compared to hearts of adults. This is due to lower levels of myoglobin and histidine in the young, which could render them more susceptible to injury during ischemia.Condensed Abstract During myocardial ischemia, H+ and lactate accumulation may pose deleterious effects on the heart. The ability to buffer H+ (buffering capacity, BC) affects ischemic tolerance. Although lactate accumulation during 1 h of global ischemia was similar between ventricles of neonatal and adult swine, H+ accumulation was greater and BC, Mb and His content were lower. With maturation, LV BC was higher than the RV while septum developmentally resembled the LV. Thus, hearts of neonates may be at a greater risk of ischemic injury compared to hearts of adults. (Mol Cell Biochem xxx: 1–7, 2005)  相似文献   

12.
Abstract: Fructose-1,6-bisphosphate (FBP), an intermediate of glucose metabolism, is neuroprotective in brain hypoxia or ischemia. Because the mechanisms for this protection are not clear, we examined the effects of FBP on two important events in brain ischemia, i.e., loss of ATP and release of the excitatory neurotransmitter glutamate. Glutamate release from cortical brain slices was measured fluorometrically (glutamate dehydrogenase)-catalyzed conversion of glutamate to α-ketoglutarate) during hypoxia (Po2 15 mm Hg) or hypoxia plus 100 µ M cyanide. FBP (3.5 m M , with glucose 20 m M ) reduced glutamate release during hypoxia by 55% and during hypoxia/cyanide by 46% ( p < 0.005), and prevented a significant fall in [ATP]. [ATP] was maintained in oxygenated glucose-free conditions with 20 but not 3.5 m M FBP, and fell to <20% of normal with hypoxia. Despite the drop in [ATP], 3.5 or 20 m M FBP without glucose decreased hypoxia-evoked glutamate release. We conclude (1) FBP present without glucose preserves normal [ATP] only when oxygen is available, suggesting limited uptake and metabolism; and (2) FBP decreases hypoxia-evoked glutamate release by processes independent of [ATP]. These results suggest protective actions of FBP that are separate from augmentation of anaerobic energy production, as previously proposed.  相似文献   

13.
We had previously shown that creatine exerted a protective effect against inhibition of cardiac mitochondrial respiration by methylglyoxal (SinhaRoy S, Biswas S, Ray M, Ray S. Biochem J 372: 661–669, 2003). In the present study, we have investigated the mechanism of this protective effect by specific amino acid modifying reagent and by several compounds, which are structurally related to creatine. The results show that the compounds, which contain guanidine group such as arginine and guanidinopropionic acid, exert a protective effect, which is quantitatively similar to creatine. This result suggests the presence of carboxylic acid(s) such as glutamic and/or aspartic acid(s) in the creatine-binding site, which has been further supported by experiments with N-ethyl-5-phenyl isoxazolium-3-sulfonate a reagent known to modify these amino acids. Both polarographic and spectrophotometric assays were performed with NADH as respiratory substrate by using a) submitochondrial particles by sonication, b) freeze-thawed mitochondria and c) mitochondria permeabilized by alamethicin treatment. The results of these studies as compared to that of intact mitochondria indicate that structural integrity of mitochondria is essential for the protective effect of creatine. (Mol Cell Biochem 271: 167–176, 2005)  相似文献   

14.
Long-chain acyl-coenzyme A esters (LCAC), which may accumulate under different pathological conditions and especially in patients with a mitochondrial fatty acid beta-oxidation defect, have long been known as potent inhibitors of several enzymes in multiple metabolic pathways, particularly the oxidative phosphorylation system (OXPHOS). To shed more light on the inhibitory mechanisms of acyl-CoA esters upon energy metabolism, the effect of palmitoyl-CoA and its beta-oxidation intermediates on OXPHOS was studied. We have recently shown that, using rat liver mitochondria, LCAC inhibit l-glutamate driven oxygen consumption in the presence of ADP whereas no effect is found when an uncoupler is used to stimulate respiration maximally. A similar inhibitory effect of these compounds is now reported upon the distribution of ATP for intra- and extra-mitochondrial utilization. Taken together these data strongly suggest that the inhibition of ADP-induced respiration with l-glutamate as substrate by LCAC is primarily due to inhibition of the mitochondrial ADP/ATP carrier.  相似文献   

15.
We studied myocardial tissue from 25 cardiac transplant recipients, who had end-stage congestive heart failure (CHF), and from 21 control donor hearts. Concentrations of total carnitine (TC), free carnitine (FC), short-chain acylcarnitines, long-chain acylcarnitines (LCAC) as well as carnitine palmitoyltransferase (CPT) activities were measured in myocardial tissue homogenates and referred to the concentration of non-collagen protein. Compared to controls, the concentrations of TC and FC as well as total CPT activities were significantly lower in patients. LCAC levels and the LCAC to FC ratio values were significantly greater in patients than in controls. While the malonyl-CoA sensitive fraction of CPT, which represents CPT I activity, was similar in patients and controls, the residual CPT activity after inhibition by malonyl-CoA, representing CPT II activity, was significantly reduced in patients compared to controls. Moreover, the activity of CPT in the presence of Triton X-100, which also represents the activity of CPT II, was significantly lower in patients than in controls. Malonyl-CoA concentrations required for half-maximal inhibition of CPT activity were significantly greater in patients than in controls. There was a linear relationship between ejection fraction (EF) values and concentrations of TC, FC, or total CPT activities. Values for LCAC and the LCAC to FC ratio were inversely related to EF values. We conclude that failing heart shows decreased total CPT and CPT II activities and carnitine deficiency that may be related to ventricle function.  相似文献   

16.
Levels of free arachidonic acid and of prostaglandin F and E2 have been measured in both brain cortex and cerebellum of rats killed by focussed microwave irradiation, and after decapitation followed by ischemia. The same parameters were studied during incubation assays. It was found that: a) after ischemia levels of both free arachidonic acid and of prostaglandins in cerebellum are lower than in brain cortex, b) formation of prostaglandins from endogenous precursor in incubated cortex is higher than in cerebellum, c) release of free arachidonic acid occurs mainly during the time interval between the sacrifice of the animals and the beginning of the incubation, whereas prostaglandins are formed mainly during the incubation assay. The correlation between release of free arachidonic acid and prostaglandin formation is discussed.  相似文献   

17.
Aberrant aggregation of microtubule associated protein tau is the main characteristic of different disorders known as tauopathies. Different compounds have been described to facilitate tau aberrant aggregation. In this work, we demonstrate that oxidized products of dopamine (neurotoxic dopamine quinone), a neurotransmitter involved in Parkinson's disease, promote tau polymerization. Curiously, neurons expressing dopamine (substantia nigra) show a low content of tau protein and seldom have tau aggregation in tauopathies. In non-dopaminergic neurons, quinone oxidation products may be involved in tau polymerization. These results support a link between oxidative damage and the onset of tauopathies. (Mol Cell Biochem 278: 203–212, 2005)  相似文献   

18.
It has been postulated that a reversal of glutamate reuptake (“uptake reverse”) may contribute to glutamate release during cerebral ischemia. We tested this hypothesis by studying the effect of threo-3hydroxy- -aspartic acid (THA), a glutamate uptake inhibitor, on extracellular glutamate accumulation measured by microdialysis during 4-vessel ischemia (20 min). The inhibitory effect of THA on sodium-dependent glutamate uptake was measured in vitro on rat hippocampal slices (Ki = 45 ± 11 μM). We examined in vivo the effect of THA (400 μM in the dialysis solution) on the extracellular glutamate release from the rat hippocampus, during veratridine depolarization and ischemia. THA decreased the amount of glutamate appearing in the extracellular space during veratridine depolarization (61%). In contrast, the glutamate release induced by ischemia was not affected by THA. We conclude that a reversal of the sodium-dependent uptake contributes to an increase in extracellular glutamate during veratridine depolarization. In contrast, glutamate release occurring during ischemia is not mediated by uptake reverse.  相似文献   

19.
Ischemic heart disease develops as a consequence of coronary atherosclerotic lesion formation. Coronary collateral vessels and microvascular angiogenesis develop as an adaptive response to myocardial ischemia, which ameliorates the function of the damaged heart. Angiogenesis, the formation of new blood vessels from pre-existing vascular bed, is of paramount importance in the maintenance of vascular integrity both in the repair process of damaged tissue and in the formation of collateral vessels in response to tissue ischemia. Angiogenesis is modulated by a multitude of cytokines/chemokines and growth factors. In this regard, angiogenesis cannot be viewed as a single process. It is likely that different mediators are involved in different phases of angiogenesis. Vascular endothelial cells (ECs) produce nitric oxide (NO), an endothelium-derived labile molecule, which maintains vascular homeostasis and thereby prevents vascular atherosclerotic changes. In patients with ischemic heart disease, the release of endothelium-derived NO is decreased, which plays an important role in the atherosclerotic disease progression. In recent years, endothelium-derived NO has been shown to modulate angiogenesis in vitro and in vivo. In this review, we summarize recent progress in the field of the NO-mediated regulation of postnatal angiogenesis, particularly in response to myocardial ischemia. (Mol Cell Biochem 264: 25–34, 2004)  相似文献   

20.
Objective: Insulin resistance is closely associated with two disparate aspects of lipid storage: the intracellular lipid content of skeletal muscle and the magnitude of central adipose beds. Our aim was to determine their relative contribution to impaired insulin action. Research Methods and Procedures: Eighteen older (56 to 75 years of age) men were studied before elective knee surgery. Insulin sensitivity (M/ΔI) was determined by hyperinsulinemic–euglycemic clamp. Central abdominal fat (CF) was assessed by DXA. Skeletal muscle was excised at surgery and assayed for content of metabolically active long‐chain acyl‐CoA esters (LCAC). Results: Significant inverse relationships were observed between LCAC and M/ΔI (R2 = 0.34, p = 0.01) and between CF and M/ΔI (R2 = 0.38, p = 0.006), but not between CF and LCAC (R2 = 0.0005, p = 0.93). In a multiple regression model (R2 = 0.71, p < 0.0001), both CF (p = 0.0006) and LCAC (p = 0.0009) were independent statistical predictors of M/ΔI. Leptin levels correlated inversely with M/ΔI (R2 = 0.60, p = 0.0002) and positively with central (R2 = 0.41, p = 0.006) and total body fat (R2 = 0.63, p = 0.0001). Discussion: The mechanisms by which altered lipid metabolism in skeletal muscle influences insulin action may not be related directly to those linking central fat and insulin sensitivity. In particular, it is unlikely that muscle accumulation of lipids directly derived from labile central fat depots is a principal contributor to peripheral insulin resistance. Instead, our results imply that circulating factors, other than nonesterified fatty acids or triglyceride, mediate between central fat depots and skeletal muscle tissue. Leptin was not exclusively associated with central fat, but other factors, secreted specifically from central fat cells, could modulate muscle insulin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号