首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radioactive polysaccharide was synthesized when uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (containing some uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate)) was incubated with a particulate enzyme preparation from Lemna minor. Characterization experiments established that the product: (i) was insoluble in methanol and water, (ii) contained d-[U-14C]apiose (75%) and d-[U-14C]xylose (25%), and (iii) was soluble in 1% ammonium oxalate. The material solubilized by ammonium oxalate (solubilized product): (i) was separated into five fractions by column chromatography with diethylaminoethyl-Sephadex (DEAE-Sephadex), (ii) contained [U-14C]apiobiose side chains that were removed by hydrolysis at pH 4, and (iii) was degraded by fungal pectinase. Both d-[U-14C]apiose residues of the [U-14C]apiobiose side chains were synthesized in vivo since radioactivity was distributed equally between the two residues. The presence of uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) during synthesis of radioactive polysaccharide resulted in: (i) an increase in the incorporation of radioactive d-[U-14C]apiose into solubilized product, (ii) an increase in the ratio of d-[U-14C]apiose to d-[U-14C]xylose present in solubilized product, (iii) an increase in the amount of [U-14C]apiobiose plus d-[U-14C]apiose released from the solubilized product by hydrolysis at pH 4, and (iv) a tighter binding of the solubilized product to DEAE-Sephadex. These results show that apiogalacturonans similar to or the same as those synthesized by the intact plant were synthesized in the particulate enzyme preparation isolated from L. minor. [14C]Apiogalacturonans completely free of d-[U-l4C]xylose were not isolated. The [14C]apiogalacturonan with the least d-[U-14C]xylose still had 4.8% of its radioactivity present in d-[U-14C]xylose. The possibility remains that d-xylose is a normal constituent of the apiogalacturonans of the cell wall of L. minor.  相似文献   

2.
Four known isoprenoids were isolated from Lemna minor besides a novel diterpene which was attributed the structure (4R)-4-hydroxyisophytol by spectroscopic studies and chemical correlation.  相似文献   

3.
  • 1.1. Glycollate oxidase has been purified to apparent homogeneity from Lemna minor L. grown on medium containing 7mM NO3.
  • 2.2. The enzyme is a highly basic protein with a sub-unit molecular weight of 42,000 and a holoprotein molecular weight of 250,000.
  • 3.3. The Lemna enzyme is a flavoprotein with a broad specificity for straight chain α-hydroxy acids, the preferred substrate being glycollate.
  • 4.4. It is also competitively inhibited by oxalate and phenyllactate.
  • 5.5. A comparison is drawn between the physical properties of glycollate oxidase from a number of higher plants and the degree of sub-unit aggregation in the resulting protomers.
  相似文献   

4.
Isolation of Polysaccharides from the Callus Culture of Lemna minor L.   总被引:2,自引:0,他引:2  
Two fractions that included acid arabinogalactan and pectin were extracted from the callus culture of duckweed plants (Lemna minorL.) with water and ammonium oxalate. Residues of galactose and arabinose (ratio, (2.0–2.5) : 1) were the major constituents of acid arabinogalactan. The pectin fraction contained primarily residues of glycuronic acids, galactose, and arabinose. The percentages of arabinogalactan and pectin were similar. The yield of polysaccharide fractions did not depend on the method used for their isolation. Extraction with water, treatment of the biomass with aqueous formalin and dilute hydrochloric acid, and extraction with aqueous ammonium oxalate allowed us to obtain the pectin polysaccharide with the highest purity.  相似文献   

5.
Summary We developed efficient genetic transformation protocols for two species of duckweed, Lemna gibba (G3) and Lemna minor (8627 and 8744), using Agrobacterium-mediated gene transfer. Partially differentiated nodules were co-cultivated with Agrobacterium tumefaciens harboring a binary vector containing β-glucuronidase and nptII expression cassettes. Transformed cells were selected and allowed to grow into nodules in the presence of kanamycin. Transgenic duckweed fronds were regenerated from selected nodules. We demonstrated that transgenic duckweed could be regenerated within 3 mo. after Agrobacterium-mediated transformation of nodules. Furthermore, we developed a method for transforming L. minor 8627 in 6 wk. These transformation protocols will facilitate genetic engineering of duckweed, ideal plants for bioremediation and large-scale industrial production of biomass and recombinant proteins.  相似文献   

6.
7.
8.
9.
Two fractions that included acid arabinogalactan and pectin were extracted from the callus culture of duckweed plants (Lemna minor L.) with water and ammonium oxalate. Residues of galactose and arabinose in the 2.0-2.5:1 ratio were the major constituents of acid arabinogalactan. The pectin fraction contained primarily residues of glucuronic acids, galactose, and arabinose. The percentage of arabinogalactan and pectin was similar. The yield of polysaccharide fractions did not depend on the method for their isolation. Extraction with water, treatment of the biomass with an aqueous solution of formalin and diluted hydrochloric acid, and extraction with an aqueous solution of ammonium oxalate allowed us to obtain the highest-purity pectin polysaccharide.  相似文献   

10.
  • 1.1. Hydroxypyruvate reductase has been purified 193-fold from Lemna minor L. by affinity chromatography on Blue Sepharose.
  • 2.2. The enzyme has activity over a broad pH range (optimum pH 6), a Km hydroxypyruvate of 59 μ M and Km NADH of 12μM.
  • 3.3. Crude extracts of Lemna exhibit substrate inhibition of activity above 1 mM hydroxypyruvate, a property which is lost on purification.
  • 4.4. Oxaloacetate inhibits purified preparations of the enzyme and a possible role for such regulation in vivo is discussed.
  相似文献   

11.
12.
Phytoremediation potential of L. minor for cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) from two different types of effluent in raw form was evaluated in a glass house experiment using hydroponic studies for a period of 31 days. Heavy metals concentration in water and plant sample was analyzed at 3, 10, 17, 24, and 31 day. Removal efficiency, metal uptake and bio-concentration factor were also calculated. Effluents were initially analyzed for physical, chemical and microbiological parameters and results indicated that municipal effluent (ME) was highly contaminated in terms of nutrient and organic load than sewage mixed industrial effluent (SMIE). Results confirmed the accumulation of heavy metals within plant and subsequent decrease in the effluents. Removal efficiency was greater than 80% for all metals and maximum removal was observed for nickel (99%) from SMIE. Accumulation and uptake of lead in dry biomass was significantly higher than other metals. Bio-concentration factors were less than 1000 and maximum BCFs were found for copper (558) and lead (523.1) indicated that plant is a moderate accumulator of both metals. Overall, L. minor showed better performance from SMIE and was more effective in extracting lead than other metals.  相似文献   

13.
14.
Structural studies of the pectic polysaccharide from duckweed Lemna minor L   总被引:7,自引:0,他引:7  
The pectic polysaccharide of duckweed Lemna minor L. termed lemnan (LM) was shown to contain the ramified, "hairy" region. Using partial acid hydrolysis and Smith degradation followed by NMR spectroscopy of the fragments obtained, some structural features of the hairy region of LM were elucidated. Partial acid hydrolysis of LM afforded the crude polysaccharide fraction LMH that was separated into two polysaccharide fractions: LMH-1 and LMH-2. In addition, the oligosaccharide fraction LMH-3 contained 97% D-apiose was obtained from the supernatant. A further more rigorous acidic hydrolysis of LMH led to the crude polysaccharide fraction LMHR which was separated in to two fractions: LMHR-1 and LMHR-2. Smith degradation of LMH afforded the polysaccharide fragment LMHS differed in low contents of apiose residues. Unfortunately, NMR-spectroscopy failed to provide significant evidence concerning the structure of LMH-1 due to the complexity of the macromolecule. The structure of the 1H/13C-NMR spectroscopy including the correlation 2D NMR spectroscopy. As a result, alpha-1,4-D-galactopyranosyluronan was confirmed to be the main constituent of the LM backbone. In addition, the ramified, "hairy" region of the macromolecule appeared to contain segments consisting of residues of terminal and beta-1,5-linked apiofuranose, terminal and alpha-1,5-linked arabinofuranose, terminal and beta-1,3- and beta-1,4- linked galactopyranose, the terminal and beta-1,4-linked xylopyranose, and beta-1,4-linked 2-mono-O-methyl xylopyranose. Analytical and NMR-spectral data of LMHS confirmed the presence of considerable amounts of the non-oxidized of 1,4-linked D-galactopyranosyl uronic acid residues. Thus, some side chains of the ramified region of lemnan appeared to attach to D-galactopyranosyl uronic acid residues of the backbone.  相似文献   

15.
16.
17.
S. Sarawek  D. D. Davies 《Planta》1977,137(3):265-270
Lemna aldolase has been purified by ion-exchange and affinity chromatography. The enzyme is inhibited by pyridoxal phosphate in a manner which suggests that pyridoxal phosphate forms a non-covalent complex with the enzymes which is in equilibrium with the Schiff base covalently modified enzyme. The kinetics of the reversal of inhibition have been used to test the proposition that the fall in aldolase activity observed during periods of nitrogen starvation is due to inhibition by pyridoxal phosphate. It is concluded that the in vivo loss of aldolase activity is not due to pyridoxal phosphate and that the in vitro inhibition of glycolytic enzymes by pyridoxal phosphate is due to the reaction with lysine residues at the active sites which are necessary to bind the strongly acidic sugar phosphates.  相似文献   

18.
The control of glutamine synthetase level in Lemna minor L.   总被引:1,自引:1,他引:0  
Summary The specific activity of glutamine synthetase (E.C. 6.3.1.2) of Lemna minor L. is markedly reduced when either ammonium ions or glutamine are present in the growth medium. Combinations of 5 mM ammonia and 5 mM glutamic acid or 5 mM ammonia and 5 mM glutamine as nitrogen source, lead to a 4–5 fold reduction of the maximum activity measurable on 5 mM -aminobutyric acid. Analyses of the soluble pool of nitrogen indicate that the reduction in enzyme level is associated with an increase in the pool of glutamine. There is an inverse correlation between the apparent rate of synthesis of glutamine synthetase and the intracellular concentration of glutamine, and this relationship suggests that the glutamine synthetase of Lemna minor is subject to end product repression by the endogenous pool of glutamine.  相似文献   

19.
Some characteristics of nitrate reductase induction in Lemna minor L.   总被引:1,自引:0,他引:1  
Summary Low levels of nitrate reductase can be detected in plants of Lemna minor grown on some organic nitrogen sources. Nitrogen-starvation does not lead to a derepression of nitrate reductase activity. Nitrate ions are necessary for the development of maximum enzyme activity and the maintenance of high enzyme levels. Nitrogen-starvation of ammonia-grown plants increases the subsequent rate of nitrate-mediated induction. It is suggested that ammonium ions, either directly or indirectly modulate the rate of nitrate reductase induction. The pattern of control regulating nitrate reductase levels in Lemna is contrasted with that in some species of algae.  相似文献   

20.
The Regulation of Nitrite Reductase Level in Lemna minor L.   总被引:2,自引:0,他引:2  
The regulation of nitrite reductase in Lemna minor has beenstudied. The evidence indicates that in nitrate-fed plants nitrateitself is the inducer of nitrite reductase. The enzyme is subjectto end-product repression by ammonia and various amino acids.Nitrate reductase is also repressed by a similar range of compounds.Most of the repressors tested are more effective when nitraterather than nitrite is supplied as the inducer. The effectsof cyclo-heximide, D-threo-chloramphenicol and lincomycin onthe induction by nitrate and nitrite suggest that both enzymesare synthesized on cytoplasmic ribosomes. The mechanism of repressionby ammonia and amino acids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号