首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

6.
7.
Branch point selection in alternative splicing of tropomyosin pre-mRNAs.   总被引:21,自引:7,他引:14  
The rat tropomyosin 1 gene gives rise to two mRNAs encoding rat fibroblast TM-1 and skeletal muscle beta-tropomyosin via an alternative splicing mechanism. The gene is comprised of 11 exons. Exons 1 through 5 and exons 8 and 9 are common to all mRNAs expressed from this gene. Exons 6 and 11 are used in fibroblasts as well as smooth muscle whereas exons 7 and 10 are used exclusively in skeletal muscle. In the present studies we have focused on the mutually exclusive internal alternative splice choice involving exon 6 (fibroblast-type splice) and exon 7 (skeletal muscle-type splice). To study the mechanism and regulation of alternative splice site selection we have characterized the branch points used in processing of the tropomyosin pre-mRNAs in vitro using nuclear extracts obtained from HeLa cells. Splicing of exon 5 to exon 6 (fibroblast-type splice) involves the use of three branch points located 25, 29, and 36 nucleotides upstream of the 3' splice site of exon 6. Splicing of exon 6 (fibroblast-type splice) or exon 7 (skeletal muscle type-splice) to exon 8 involves the use of the same branch point located 24 nucleotides upstream of this shared 3' splice site. In contrast, the splicing of exon 5 to exon 7 (skeletal muscle-type splice) involves the use of three branch sites located 144, 147 and 153 nucleotides, upstream of the 3' splice site of exon 7. In addition, the pyrimidine content of the region between these unusual branch points and the 3' splice site of exon 7 was found to be greater than 80%. These studies raise the possibility that the use of branch points located a long distance from a 3' splice site may be an essential feature of some alternatively spliced exons. The possible significance of these unusual branch points as well as a role for the polypyrimidine stretch in intron 6 in splice site selection are discussed.  相似文献   

8.
The on/off state of the binary switch gene Sex-lethal (Sxl), which controls somatic sexual development in Drosophila melanogaster, is regulated at the level of alternative splicing. In males, in which the gene is off, the default splicing machinery produces nonfunctional mRNAs; in females, in which the gene is on, the autoregulatory activity of the Sxl proteins directs the splicing machinery to produce functional mRNAs. We have used germ line transformation to analyze the mechanism of default and regulated splicing. Our results demonstrate that a blockage mechanism is employed in Sxl autoregulation. However, in contrast to transformer, in which Sxl appears to function by preventing the interaction of splicing factors with the default 3' splice site, a different strategy is used in autoregulation. (i) Multiple cis-acting elements, both upstream and downstream of the male exon, are required. (ii) These cis-acting elements are distant from the splice sites they regulate, suggesting that the Sxl protein cannot function in autoregulation by directly competing with splicing factors for interaction with the regulated splice sites. (iii) The 5' splice site of the male exon appears to be dominant in regulation while the 3' splice site plays a subordinate role.  相似文献   

9.
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.  相似文献   

10.
J Ct  M J Simard    B Chabot 《Nucleic acids research》1999,27(12):2529-2537
The neural cell adhesion molecule (NCAM) gene contains an 801 nt exon that is included preferentially in neuronal cells. We have set up an in vitro splicing system that mimics the neuro-specific alternative splicing profile of NCAM exon 18. Splicing regulation is observed using model pre-mRNAs that contain competing 5' or 3' splice sites, suggesting that distinct pathways regulate NCAM 5' and 3' splice site selection. While inclusion of exon 18 is the predom-inant choice in neuronal cells, an element in the 5' common exon 17 improves exon 17/exon 19 splicing in a neuronal cell line. A similar behavior is observed in vitro as the element can stimulate the 5' splice site of exon 17 or a heterologous 5' splice site. The minimal 32 nt sequence of the exon 17 enhancer consists of purine stretches and A/C motifs. Mutations in the purine stretches compromise the binding of SR proteins and decreases splicing stimulation in vitro. Mutations in the A/C motifs do not affect SR protein binding but reduce enhancing activity. Our results suggest that the assembly of an enhancer complex containing SR proteins in a 5' common exon ensures that NCAM mRNAs lacking exon 18 are made in neuronal cells.  相似文献   

11.
Imprecise excision of the Caenorhabditis elegans transposon Tc1 from a specific site of insertion within the unc-54 myosin heavy chain gene generates either wild-type or partial phenotypic revertants. Wild-type revertants and one class of partial revertants contain insertions of four nucleotides in the unc-54 third exon (Tc1 "footprints"). Such revertants express large amounts of functional unc-54 myosin despite having what would appear to be frameshifting insertions in the unc-54 third exon. We demonstrate that these Tc1 footprints act as efficient 5' splice sites for removal of the unc-54 third intron. Splicing of these new 5' splice sites to the normal third intron splice acceptor removes the Tc1 footprint from the mature mRNA and restores the normal translational reading frame. Partial revertant unc-54(r661), which contains a single nucleotide substitution relative to the wild-type gene, is spliced similarly, except that the use of its new 5' splice site creates a frameshift in the mature mRNA rather than removing one. In all of these revertants, two alternative 5' splice sites are available to remove intron 3. We determined the relative efficiency with which each alternative 5' splice site is used by stabilizing frameshifted mRNAs with smg(-) genetic backgrounds. In all cases, the upstream member of the two alternative sites is used preferentially (> 75% utilization). This may reflect an inherent preference of the splicing machinery for the upstream member of two closely spaced 5' splice sites. Creation of new 5' splice sites may be a general characteristic of Tc1 insertion and excision events.  相似文献   

12.
13.
14.
15.
We have characterized a novel positive-acting splicing element within the developmentally regulated alternative exon (exon 5) of the cardiac troponin T (cTNT) gene. The exon splicing element (ESE) is internal to the exon portions of the splice sites and is required for splicing to the 3' splice site but not the 5' splice site flanking the exon. Sequence comparisons between cTNT exon 5 and other exons that contain regions required for splicing reveal a common purine-rich motif. Sequence within cTNT exon 5 or a synthetic purine-rich motif facilitates splicing of heterologous alternative and constitutive splice sites in vivo. Interestingly, the ESE is not required for the preferential inclusion of cTNT exon 5 observed in primary skeletal muscle cultures. Our results strongly suggest that the purine-rich ESE serves as a general splicing element that is recognized by the constitutive splicing machinery.  相似文献   

16.
17.
Pseudo-exons are intronic sequences that are flanked by apparent consensus splice sites but that are not observed in spliced mRNAs. Pseudo-exons are often difficult to activate by mutation and have typically been viewed as a conceptual challenge to our understanding of how the spliceosome discriminates between authentic and cryptic splice sites. We have analyzed an apparent pseudo-exon located downstream of mutually exclusive exons 2 and 3 of the rat alpha-tropomyosin (TM) gene. The TM pseudo-exon is conserved among mammals and has a conserved profile of predicted splicing enhancers and silencers that is more typical of a genuine exon than a pseudo-exon. Splicing of the pseudo-exon is fully activated for splicing to exon 3 by a number of simple mutations. Splicing of the pseudo-exon to exon 3 is predicted to lead to nonsense-mediated decay (NMD). In contrast, when "prespliced" to exon 2 it follows a "zero length exon" splicing pathway in which a newly generated 5' splice site at the junction with exon 2 is spliced to exon 4. We propose that a subset of apparent pseudo-exons, as exemplified here, are actually authentic alternative exons whose inclusion leads to NMD.  相似文献   

18.
We have isolated and characterized two kinds of cDNA for the chicken cardiac myosin alkali light chain. The sequences of the two cDNAs are identical, except for a notable divergence in part of the 3' untranslated sequence. By analysis of isolated genomic clones, it was shown that the genomic sequences corresponding to the different sequences in the 3' untranslated regions of the two mRNAs were arranged within a limited part of a single stretch of DNA; also the two distinct 3' untranslated regions of the two mRNAs shared part of the last exon, which was 0.6 x 10(3) base-pairs long. There are two canonical acceptor sites available for RNA splicing in the last exon, the first being located at the 5' end of the exon, and the second at 370 base-pairs downstream from this end. Together with analysis by S1 nuclease mapping, the foregoing results lead us to conclude that, by the differential use of these two acceptor sites, a single gene generates two distinct mRNAs of 1.45 x 10(3) base-pairs and 1.1 x 10(3) base-pairs with or without the 5' half of the last exon. The two mRNAs appear to utilize the same modified poly(A) signal, AGTAAA, rather than the authentic AATAAA sequence present about 30 base-pairs downstream from the poly(A) attachment sites. This is probably because another consensus G + T-rich sequence is present at an appropriate distance from the AGTAAA sequence, but not from the AATAAA sequence. The gene for the cardiac myosin alkali light chain has proved to be expressed in ventricular muscle and in atrial and anterior latissimus dorsi muscles, the last of these being characteristic of slow skeletal muscle. In these muscles, two kinds of mRNA for the cardiac myosin alkali light chain, identical with those in ventricular muscle, were expressed and their relative amount in each tissue was almost the same as that in ventricular muscle.  相似文献   

19.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

20.
We are using the tissue-specific splicing of myosin phosphatase targeting subunit (MYPT1) as a model to investigate smooth muscle phenotypic diversity. We previously identified a U-rich intronic enhancer flanking the 5' splice site (IE1), and a bipartite exonic enhancer/suppressor, that regulate splicing of the MYPT1 central alternative exon. Here we show that T-cell inhibitor of apoptosis (TIA-1) and T-cell inhibitor of apoptosis-related (TIAR) proteins bind to the IE1. Co-transfection of TIA expression vectors with a MYPT1 mini-gene construct increase splicing of the central alternative exon. TIA proteins do not enhance splicing when the palindromic exonic splicing enhancer (ESE) is mutated, indicating that TIAs are necessary but not sufficient for splicing. The ESE specifically binds SRp55 and SRp20 proteins, supporting a model in which both SR and TIA proteins binding to their cis-elements are required for the recruitment of the splicing complex to a weak 5' splice site. Inactivation of TIA proteins in the DT40 cell line (TIA-1(-/-)TIAR(+/-)) reduced the splicing of the central alternative exon of the endogenous MYPT1 as well as stably transfected MYPT1 minigene constructs. Splicing of the MYPT1 3' alternative exon and the MLC(17) alternative exon were unaffected, suggesting that TIA proteins regulate a subset of smooth muscle/nonmuscle alternative splicing reactions. Finally, reduced RNA binding and reduced expression of the TIA and SR proteins in phasic (gizzard) smooth muscle around hatching coincided with the switch from exon inclusion to exon skipping, suggesting that loss of TIA and SR enhancer activity may play a role in the developmental switch in MYPT1 splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号