首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectra are presented for sarcoplasmic reticulum membranes. Interpretation of the 1000–1130 cm?1 region of the spectrum indicates that the sarcoplasmic reticulum membrane may be more fluid than erythrocyte membranes that have been examined by the same technique. The fluidity of the membrane also manifests itself in the amide I portion of the membrane spectrum with a strong 1658 cm?1 band characteristic of CC stretching in hydrocarbon side chains exhibiting cis conformation. This band is unaltered in intensity and position in H2O and in 2H2O thus obscuring amide I protein conformation. Of particular interest is the appearance of strong, resonantly enhanced bands at 1160 and 1527 cm?1 attributable to membrane-associated carotenoids.  相似文献   

2.
Time-resolved infrared difference spectra of the ATP-induced phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase have been recorded in H2O and 2H2O at pH 7.0 and 1 degrees C. The reaction was induced by ATP release from P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate (caged ATP) and from [gamma-18O3]caged ATP. A band at 1546 cm-1, not observed with the deuterated enzyme, can be assigned to the amide II mode of the protein backbone and indicates that a conformational change associated with ATPase phosphorylation takes place after ATP binding. This is also indicated between 1700 and 1610 cm-1, where bandshifts of up to 10 cm-1 observed upon protein deuteration suggest that amide I modes of the protein backbone dominate the difference spectrum. From the band positions it is deduced that alpha-helical, beta-sheet, and probably beta-turn structures are affected in the phosphorylation reaction. Model spectra of acetyl phosphate, acetate, ATP, and ADP suggest the tentative assignment of some of the bands of the phosphorylation spectrum to the molecular groups of ATP and Asp351, which participate directly in the phosphate transfer reaction: a positive band at 1719 cm-1 to the C==O group of aspartyl phosphate, a negative band at 1239 cm-1 to the nuas(PO2-) modes of the bound ATP molecule, and a positive band at 1131 cm-1 to the nuas(PO32-) mode of the phosphoenzyme phosphate group, the latter assignment being supported by the band's sensitivity toward isotopic substitution in the gamma-phosphate of ATP. Band positions and shapes of these bands indicate that the alpha- and/or beta-phosphate(s) of the bound ATP molecule become partly dehydrated when ATP binds to the ATPase, that the phosphoenzyme phosphate group is unprotonated at pH 7.0, and that the C==O group of aspartyl phosphate does not interact with bulk water. The Ca2+ binding sites seem to be largely undisturbed by the phosphorylation reaction, and a functional role of the side chains of Asn, Gln, and Arg residues was not detected.  相似文献   

3.
Phospholamban is a 52-amino acid residue membrane protein that regulates Ca(2+)-ATPase activity in the sarcoplasmic reticulum of cardiac muscle cells. The hydrophobic C-terminal 28 amino acid fragment of phospholamban (hPLB) anchors the protein in the membrane and may form part of a Ca(2+)-selective ion channel. We have used polarized attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy along with site-directed isotope labeling to probe the local structure of hPLB. The frequency and dichroism of the amide I and II bands appearing at 1658 cm-1 and 1544 cm-1, respectively, show that dehydrated and hydrated hPLB reconstituted into dimyristoylphosphatidycholine bilayer membranes is predominantly alpha-helical and has a net transmembrane orientation. Specific local secondary structure of hPLB was probed by incorporating 13C at two positions in the protein backbone. A small band seen near 1614 cm-1 is assigned to the amide I mode of the 13C-labeled amide carbonyl group(s). The frequency and dichroism of this band indicate that residues 39 and 46 are alpha-helical, with an axial orientation that is approximately 30 degrees relative to the membrane normal. Upon exposure to 2H2O (D2O), 30% of the peptide amide groups in hPLB undergo a slow deuterium/hydrogen exchange. The remainder of the protein, including the peptide groups of Leu-39 and Leu-42, appear inaccessible to exchange, indicating that most of the hPLB fragment is embedded in the lipid bilayer. By extending spectroscopic characterization of PLB to include hydrated, deuterated as well as site-directed isotope-labeled hPLB films, our results strongly support models of PLB that predict the existence of an alpha-helical hydrophobic region spanning the membrane domain.  相似文献   

4.
The effect of dimethyl sulfoxide (DMSO) on the structure of sarcoplasmic reticulum was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopy. Exposure of sarcoplasmic reticulum vesicles to 35% DMSO (v/v) at 2 degrees C for several hours in a D2O medium produced no significant change in the phospholipid and protein Amide I regions of the FTIR spectra, but the intensity of the Amide II band decreased, presumably due to proton/deuterium exchange. At 40% to 60% DMSO concentration a shoulder appeared in the FTIR spectra at 1630 cm-1, that is attributed to the formation of new beta or random coil structures; irreversible loss of ATPase activity accompanied this change. At 70% DMSO concentration the intensity of the main Amide I band at 1639 cm-1 decreased and a new band appeared at 1622 cm-1, together with a shoulder at 1682 cm-1. These changes indicate an abrupt shift in the conformational equilibrium of Ca2+-ATPase from alpha to beta structure or to a new structure characterized by weaker hydrogen bonding. Decrease of ionization of aspartate and glutamate carboxyl groups in the presence of DMSO may also contribute to the change in intensity at 1622 cm-1. The changes were partially reversed upon removal of DMSO. Exposure of sarcoplasmic reticulum vesicles to 1.5 kbar pressure for 1 h at 2 degrees C in an EGTA-containing (low Ca2+) medium causes irreversible loss of ATPase activity, with the appearance of new beta structure, and abolition of the Ca2+-induced fluorescence response of FITC covalently bound to the Ca2+-ATPase; DMSO (35%) stabilized the Ca2+-ATPase against pressure-induced changes in structure and enzymatic activity, while urea (0.8 M) had the opposite effect.  相似文献   

5.
The secondary structure of bacteriorhodopsin has been investigated by polarized Fourier transform infrared spectroscopy combined with hydrogen/deuterium exchange, isotope labeling and resolution enhancement methods. Oriented films of purple membrane were measured at low temperature after exposure to H2O or D2O. Resolution enhancement techniques and isotopic labeling of the Schiff base were used to assign peaks in the amide I region of the spectrum. alpha-helical structure, which exhibits strong infrared dichroism, undergoes little H/D exchange, even after 48 h of D2O exposure. In contrast, non-alpha-helical structure, which exhibits little dichroism, undergoes rapid H/D exchange. A band at 1,640 cm-1, which has previously been assigned to beta-sheet structure, is found to be due in part to the C = N stretching vibration of protonated Schiff base of the retinylidene chromophore. We conclude that the membrane spanning regions of bR consist predominantly of alpha-helical structure whereas most beta-type structure is located in surface regions directly accessible to water.  相似文献   

6.
The mean orientations of the transition dipole moments associated with vibrational modes of the proteins and phospholipids of sarcoplasmic reticulum were determined on dry and hydrated membrane multilayers deposited on germanium or zinc selenide crystals, using polarized infrared attenuated total reflectance spectroscopy (P-IR-ATR). For preservation of the enzymatic activity of the Ca(2+)-ATPase the films were prepared from solutions containing 0.05 M KCl, 5 mM imidazole (pH 7.4), 0.5 mM MgCl2, 1-10 mM trehalose and dithiothreitol. The anisotropy was highest in dry films containing congruent to 7.5 micrograms protein/cm2, and decreased with increasing membrane thickness or hydration. The dichroic ratio of the CH2 vibrations (2923 cm-1) of extracted sarcoplasmic reticulum phospholipids on Ge plate was 1.56, compared with a dichroic ratio of 1.68 obtained on dry films of whole sarcoplasmic reticulum. The dichroic ratios of the amide I band (1650 cm-1) of the Ca(2+)-ATPase in the Ca2-E1 state and in the EGTA and vanadate stabilized E2-V state were nearly identical (1.60 vs. 1.62). The dichroism of the amide I, amide II and lipid CH2 vibrations was not affected by changes in the concentration of KCl (25-100 mM) or Ca2+ (approximately equal to 10(-8)-10(-4) M) and by the addition of vanadate (1 mM) or Pi (5 mM) in a calcium-free medium containing 0.5 mM EGTA. The dichroic ratio of the C-C (1033 cm-1) or CO stretching band (1046 cm-1) of trehalose incorporated into SR films was 1.2 on Ge plate; this corresponds to a mean angle of approximately 70 degrees between the plane of the trehalose ring and the normal of the film plane, suggesting that the trehalose molecules are surprisingly well oriented in the polar headgroup region of the phospholipids. The orientation of the trehalose was not affected by the presence of Ca(2+)-ATPase.  相似文献   

7.
Beware of proteins in DMSO   总被引:6,自引:0,他引:6  
The effect on the secondary structure of representative alpha-helical, beta-sheet and disordered proteins by varying concentrations of dimethyl sulphoxide (DMSO) in 2H2O has been investigated by Fourier transform infrared spectroscopy. Significant perturbations of protein secondary structure are induced by DMSO and DMSO/2H2O mixtures. For highly structured proteins, such as myoglobin and concanavalin A, the infrared spectra point to a progressive destabilisation of the secondary structure until at moderate DMSO concentrations (around 0.33 mol fraction) intermolecular beta-sheet formation and aggregation are induced, as indicated by the appearance of a strong band at 1621 cm-1. This is a direct consequence of the disruption of intramolecular peptide group interactions by DMSO (partial unfolding). At higher DMSO concentrations (above 0.75 mol fraction), such aggregates are dissociated by disruption of the intermolecular C = O...2H-N deuterium bonds. The presence of a single amide I band at 1662 cm-1 corresponding to free amide C = O groups indicates that at high concentrations and in pure DMSO the proteins are completely unfolded, lacking any secondary structure. While low concentrations of DMSO showed no detectable effect upon the gross secondary structure of myoglobin and concanavalin A, the thermal stability of both proteins was markedly reduced. In alpha-casein, a highly unstructured protein, the situation is one of direct competition. The amide I maximum in 2H2O, at 1645 cm-1, is typical of unordered proteins with C = O groups deuterium-bonded predominantly to 2H2O. Addition of DMSO disrupts such interactions by competing with the peptide C = O group for the deuterium bond donor capacity of the 2H2O, and so progressively increases the amide I maximum until it stabilizes at 1663 cm-1, a position indicative of free C = O groups.  相似文献   

8.
Infrared spectroscopy of a single cell--the human erythrocyte   总被引:1,自引:0,他引:1  
Methods for obtaining the infrared spectrum of a single erythrocyte by infrared microscopy have been developed. The spectrum contains the amide I, II, and III bands characteristic of protein secondary structure near 1650, 1550, and 1300 cm-1, respectively. Bound carbon monoxide exhibits a readily measured band at 1951 cm-1 for 12C16O and 1907 cm-1 for 13C16O. Both amide and CO bands are similar to those found for purified hemoglobin A. Spectra can be obtained in H2O or D2O media under physiologically relevant conditions. Single cell infrared spectroscopy (SCIR) permits the qualitative and quantitative determination of differences among individual red cells. These results suggest many potential applications for SCIR for the measurements of properties of individual cells at the molecular level under physiologically relevant conditions.  相似文献   

9.
The secondary structural changes of the membrane protein, bacteriorhodopsin, are studied during the premelting reversible transition by using laser-induced temperature jump technique and nanosecond time-resolved Fourier transform infrared spectroscopy. The helical structural changes are triggered by using a 15 degrees C temperature jump induced from a preheated bacteriorhodopsin in D2O solution at a temperature of 72 degrees C. The structural transition from alphaII- to alphaI-helices is observed by following the change in the frequency of the amide I band from 1667 to 1651 cm-1 and the shift in the frequency of the amide II vibration from 1542 cm-1 to 1436 cm-1 upon H/D exchange. It is found that although the amide I band changes its frequency on a time scale of <100 ns, the H/D exchange shifts the frequency of the amide II band and causes a complex changes in the 1651-1600 cm-1 and 1530-1430 cm-1 frequency region on a longer time scale (>300 ns). Our result suggests that in this "premelting transition" temperature region of bacteriorhodopsin, an intrahelical conformation conversion of the alphaII to alphaI leads to the exposure of the hydrophobic region of the protein to the aqueous medium.  相似文献   

10.
Infrared spectra of concanavalin A have been obtained both in the absence and in the presence of the metal ions, Mn2+ and Ca2+, and the saccharide, alpha-methylmannose. Second derivative calculations have been used to determine the frequencies of the different amide I and II components. In the demetallized protein dissolved in H2O buffer, absorptions in the amide I, II and III regions at 1695 and 1634, 1532 and 1237 cm-1, respectively, are assigned to beta-structure, while absorptions at 1563 and both 1318 and 1343 cm-1 are assigned to turns and bends. After deuterium exchange, the residual amide II maximum in the difference spectrum shifts from 1538 to 1563 cm-1, indicating that exchange is faster in the beta-structure than in the turns. In the presence of Mn2+ and Ca2+, the amide II band component at 1532 cm-1 shifts 4-6 cm-1 to higher wavenumbers, and the amide I band component at 1634 shifts 1 cm-1 in the same direction, both in H2O and 2H2O buffers, suggesting changes in the hydrogen-bonding network of a large portion of the protein, particularly in the beta-sheet regions. The addition of alpha-methylmannose increases the magnitude of exchange from 55% to above 90%. Comparison with existing X-ray crystallographic data has been made, and the usefulness of FT-IR to complement this technique is discussed.  相似文献   

11.
Infrared spectroscopy has been applied to the study of a number of aqueous systems of model and natural biomembranes. The absorption bands arising from water and buffer solutions were eliminated by means of an infrared spectrometer data station. Spectra were examined using H2O and 2H2O aqueous buffer systems. Pure lecithin-water systems, and various model biomembranes containing cholesterol, gramicidin A, bacteriorhodopsin or Ca2+-ATPase were examined. The infrared spectra of the reconstituted biomembranes were compared with those of the corresponding natural biomembranes, i.e. the purple membrane of Halobacterium halobium and also sarcoplasmic reticulum membranes, respectively.Changes in lipid chain conformation caused by the various intrinsic molecules incorporated within the model lipid bilayer structures were monitored by studying the shifts in frequency (cm?1) of the CH2 symmetric and asymmetric absorption bands arising from the lipid chains. The effect of gramicidin A and also the intrinsic proteins, as indicated by the shift of band frequencies, are quite different from that of cholesterol at temperatures above the main lipid transition temperature tc. Cholesterol causes a reduction in gauche isomers which increases with concentration of cholesterol within the lipid bilayer. Whilst gramicidin A and the intrinsic proteins at low concentration cause a reduction of gauche isomers, at higher concentrations of these molecules, however, there is little difference in gauche isomer content when the intrinsic molecule is present compared with that of the fluid lipid alone. These results are considered and compared with previously published studies using deuterium nuclear magnetic resonance spectroscopy on similar model biomembrane systems. Below the lipid tc value, all the intrinsic molecules produce an increase in gauche isomers presumably by disturbing the lipid chain packing in the crystalline lipid arrangement.Information about the polypeptide structure within gramicidin A. the reconstituted proteins and also the proteins in the natural biomembranes was obtained by examining the region of the infrared spectrum between 1600 and 1700 cm?1 associated with the amide I and amide II bands. An examination of the infrared band frequencies of the different systems in this region leads to the conclusions: (1) that gramicidin A within a phospholipid bilayer structure probably has a single helix rather than a double helix structure; (2) that there are differences in band widths of the reconstituted Ca2+-ATPase and bacteriorhodopsin compared with the spectra of the corresponding sarcoplasmic reticulum and purple membrane; (3) different membrane proteins adopt different conformations as evinced by a comparison of the spectra of the sarcoplasmic reticulum and purple membrane; (4) the polypeptide arrangement in the purple membrane is mainly helical but the abnormal frequency of the amide I band suggests that some distortion of the helix occurs: and (5) the sarcoplasmic reticulum membrane contains unordered as well as α-helix polypeptide arrangements.  相似文献   

12.
1. Plasma membranes from rabbit thymocytes have been analyzed by laser-Raman spectroscopy over the 800-3000 cm-1 region and the spectra compared with those of endoplasmic reticulum, as well as relevant liposome systems. 2. Evaluation of the Amide I and Amide III regions indicates that thymocyte plasma membranes, but not endoplasmic reticulum, contain appreciable beta-structure peptide. This conclusion is supported by infrared spectroscopy. 3. Evaluation of the 2890 cm-1: 2850 cm-1 intensity ratio of plasma membranes as a function of temperature, using an integration technique, demonstrates a thermotropic lipid transition centered near 23 degrees C. This transition is less sharp than one observed with egg lecithin in this temperature range. 4. The significance of the thermotropic transition is evaluated in view of the lack of thermotropic lipid-protein segregation detectable by freeze-fracture electron microscopy (Wunderlich, F., Wallach, D.F.H., Speth, V. and Fischer, H. (1973) Biochim. Biophys. Acta 373, 34-43).  相似文献   

13.
We have used time-resolved Fourier transformed infrared difference spectroscopy to characterize the amplitude, frequency, and kinetics of the absorbance changes induced in the infrared (IR) spectrum of sarcoplasmic reticulum Ca(2+)-ATPase by calcium binding at the high-affinity transport sites. 1-(2-Nitro-4,5-dimethoxyphenyl)-N,N,N',N'-tetrakis [(oxycarbonyl)methyl]-1,2-ethanediamine (DM-nitrophen) was used as a caged-calcium compound to trigger the release of calcium in the IR samples. Calcium binding to Ca(2+)-ATPase induces the appearance of spectral bands in difference spectra that are all absent in the presence of the inhibitor thapsigargin. Spectral bands above 1700 cm-1 indicate that glutamic and/or aspartic acid side chains are deprotonated upon calcium binding, whereas other bands may be induced by reactions of asparagine, glutamine, and tyrosine residues. Some of the bands appearing in the 1690-1610 cm-1 region arise from modifications of peptide backbone carbonyl groups. The band at 1653 cm-1 is a candidate for a change in an alpha-helix, whereas other bands could arise from modifications of random, turn, or beta-sheet structures or from main-chain carbonyl groups playing the role of calcium ligands. Only a few residues are involved in secondary structure changes. The kinetic evolution of these bands was recorded at low temperature (-9 degrees C). All bands exhibited a monophasic kinetics of rate constant 0.026 s-1, which is compatible with that measured in previous study at the same temperature in a suspension of sarcoplasmic reticulum vesicles by intrinsic fluorescence of Ca(2+)-ATPase.  相似文献   

14.
Ryanodine at concentrations of 0.01-10 microM increased, while greater concentrations of 10-300 microM decreased the calcium permeability of both rabbit fast twitch skeletal muscle junctional and canine cardiac sarcoplasmic reticulum membranes. Ryanodine did not alter calcium binding by either sarcoplasmic reticulum membranes or the calcium binding protein, calsequestrin. Therefore, the effects by this agent appear to involve only changes in membrane permeability, and the characteristics of the calcium permeability pathway affected by ryanodine were those of the calcium release channel. Consistent with this, the actions by ryanodine were localized to junctional sarcoplasmic reticulum membranes and were not observed with either longitudinal sarcoplasmic reticulum or transverse tubular membranes. In addition, passage of the junctional sarcoplasmic reticulum membranes through a French press did not diminish the effects of ryanodine indicating that intact triads were not required. Under the conditions used for the permeability studies, the binding of [3H]ryanodine to skeletal junctional sarcoplasmic reticulum membranes was specific and saturable, and Scatchard analyses indicated the presence of a single binding site with a Kd of 150-200 nM and a maximum capacity of 10.1-18.9 pmol/mg protein. [3H]ryanodine binding to this site and the increase in membrane calcium permeability caused by low concentrations of ryanodine had similar characteristics suggesting that actions at this site produce this effect. Depending on the assay conditions used, ryanodine (100-300 microM) could either increase or decrease ATP-dependent calcium accumulation by skeletal muscle junctional sarcoplasmic reticulum membranes indicating that the alterations of sarcoplasmic reticulum membrane calcium permeability caused by this agent can be determined in part by the experimental environment.  相似文献   

15.
The initial rate of Ca2+ translocation in vesicular preparations of the sarcoplasmic reticulum membranes is shown to fall with a pH decrease to 6.0 or 5.0 and to rise with a pH change to 7.0 to 7.8 in respect to the initial 6.5. It is established that the Ca2+ sorption by the membranes or their fluidity make no essential contribution to the recorded changes of 45Ca2+ level in the membrane preparations. It is shown that the passive Ca2+ transport depends to a considerable extent on the concentration of a proton at the outer surface of the sarcoplasmic reticulum membrane: an excess of H+ inhibits the Ca2+ input and output, while a decrease of the proton concentration promotes an increase in the rate of these processes in the sarcoplasmic reticulum.  相似文献   

16.
A new method for isolating transverse tubule membranes from rabbit skeletal muscle has been developed. This procedure has the advantage of being mild, fast, and producing with good yields a purified membrane fraction. The transverse tubule membranes are purified by a discontinuous sucrose density centrifugation after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. Immunofluorescence staining of cryostat sections of rabbit psoas muscle with purified goat antibodies directed against the purified membranes shows that the reacting antigens are distributed at the boundary of the A and I bands of the myofibrils where transverse tubules are localized in mammalian muscle. The purified antibodies showed no cross-reactivity with sarcoplasmic reticulum, nor did they show any fluorescence staining of the muscle plasma membrane, indicating that the isolated membranes indeed originate from the transverse tubules. The transverse tubule fraction has a characteristic protein composition distinguishable from that of sarcoplasmic reticulum, a much higher cholesterol content than that of the crude microsomes, plasma membrane, and sarcoplasmic reticulum, and a phospholipid content about twice as high as that of sarcoplasmic reticulum and plasma membrane. The purified transverse tubule membrane has a distinct phospholipid composition with high contents of sphingomyelin and phosphatidylserine. A Mg2+-activated ATPase characteristic of the transverse tubule fraction undergoes a 20-30-fold increase in specific activity during purification. The levels of Ca2+-ATPase activity present in the purified transverse tubule fraction remain comparable to those of sarcoplasmic reticulum even after extensive removal of the latter.  相似文献   

17.
S P Verma 《Radiation research》1986,107(2):183-193
We have used Raman spectroscopy to study the effects of ionizing radiation on thermal transitions of dipalmitoyl lecithin + polyunsaturated fatty acid liposomes. Raman spectra in the CH (2800-3000 cm-1), C = C (1600-1680 cm-1), and C-C (1000-1150 cm-1) stretching regions are sensitive to ionizing radiation. The CH stretching of acyl chains yields three strong bands around 2850, 2880, and 2930 cm-1. The ratios of the relative intensities of 2880 and 2850 cm-1 bands, i.e., I2880/2850, when plotted against temperature show multiple infection points which correspond to multiple spectroscopic transitions. These are ascribed to a separate phase with distinctive proportions of lecithin and polyunsaturated fatty acids. We find these transitions sensitive to low levels of ionizing radiation. Doses as low as 5-15 rad after 48 h of 60Co gamma irradiation and 60 kVp X irradiation drastically broaden and shift the polyunsaturated rich phase which occurs at lower temperatures (-7 to +5 degrees C) than that of pure dipalmitoyl lecithin (39 degrees C). In addition a new transition around 46 degrees C also emerges upon irradiation (48 h postirradiation). These irradiation effects can be accelerated by the presence of catalytic amounts of Fe2+/EDTA +H2O2. The membrane transition modification is more sensitive to 60 kVp X rays in comparison to 60Co gamma rays owing to the high LET component of the former. The intensity of 1660 cm-1 band, assigned to C = C stretching in the cis-configuration, loses intensity upon irradiation. Concomitantly, a new band around 1675 cm-1, assigned to trans-configuration, emerges. Similarly the increase in the "order parameter" as calculated from the relative intensities of C--C stretching bands indicates rigidification of membrane. Various factors such as reduction in unsaturation, increase in trans-configuration, and the formation of multiple peroxidation products are invoked as lipid phase modifiers.  相似文献   

18.
Summary The membrane systems of the cardiac muscle cell of the amphipod Tmetonyx cicada (O. Fabricius) are described. The sarcolemma invaginates and forms a transverse network of tubules at the level of the Z band. Narrow longitudinal tubules branch from the network and connect to another transverse network of tubules at the H band level, where dyadic and triadic junctions are formed with the sarcoplasmic reticulum. Adjacent myofibrils are normally separated by a well developed double layer of the sarcoplasmic reticulum. In areas where the myofibrils closely approach the outer sarcolemma, peripheral couplings have been found at the level of the H band.  相似文献   

19.
The fine structure of the sarcoplasmic reticulum and the transverse tubular system of the femoral muscle of the cockroach, Leucophaea maderae, was studied after prefixation in glutaraldehyde, postfixation in osmium tetroxide, and embedding in Epon. The sarcoplasmic reticulum in this muscle reveals features not previously reported. The sarcoplasmic reticulum is abundant, consisting mainly of a fenestrated envelope which surrounds each myofibril at all levels in the sarcomere. This sarcoplasmic reticulum envelope is continuous transversally as well as longitudinally along the myofibrils. Dyadic junctions are formed by a single T system element which contacts the unfenestrated sarcoplasmic reticulum of adjacent myofibrils in an alternating manner at the ends of the A band. At the dyads, regularly spaced thickenings of the sarcoplasmic reticulum membranes bordering the dyadic spaces are noted. These thickenings, however, do not contact the T tubule membrane. Typical dyadic contacts also are seen between the cell surface membrane and sarcoplasmic reticulum. Z line-like material is seen in contact with the membranes of the cell surface and longitudinal branches of the T systems.  相似文献   

20.
Several proteins in sarcoplasmic reticulum preparations move in a band with a mobility, in sodium dodecyl sulfate-polyacrylamide gels (0.1 M phosphate buffer, pH 7.0), corresponding to a molecular mass of about 55,000 daltons. Only one of these proteins is the high affinity calcium binding protein. An intrinsic glycoprotein is also present in this band, and it is this glycoprotein which is found in vesicles reconstituted after dissolution of sarcoplasmic reticulum in deoxycholate. Both of these proteins are found in rather constant ratios with the ATPase in light, intermediate, and heavy sarcoplasmic reticulum vesicles. Transverse tubular vesicles can be isolated from the heavy sarcoplasmic reticulum vesicles after disruption of the membrane in a French pressure cell (Lau, Y.H., Caswell, A.H., and Brunschwig, J.P. (1977) J. Biol. Chem. 252, 5565-5574). These vesicles are enriched in their content of the high affinity calcium binding and depleted of the intrinsic glycoprotein. Cycloheptaamylose . fluorescamine complex (CFC) labels the intrinsic glycoprotein heavily indicating that it is at least partially exposed on the cytoplasmic surface of sarcoplasmic reticulum membranes. Since the carbohydrate component of the protein must lie in luminal spaces, it is inferred that the intrinsic glycoprotein is a transmembrane protein. The high affinity calcium binding protein is not labeled by CFC indicating that it is not exposed on the cytoplasmic surface of sarcotubular vesicles. The protein is also not affected by proteolytic digestion of sarcoplasmic reticulum vesicles and can be isolated intact from trypsin-digested vesicles. It is not removed from sarcoplasmic-reticulum vesicles by washing with buffers containing Chelex 100 or ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). These data show that the high affinity calcium binding protein is localized in the interior of the sarcotubular system and suggest that it might be common to both sarcoplasmic reticulum and transverse tubular membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号