首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transthyretin (TTR), a homotetrameric thyroxine transport protein found in the plasma and cerebrospinal fluid, circulates normally as a innocuous soluble protein. In some individuals, TTR polymerizes to form insoluble amyloid fibrils. TTR amyloid fibril formation and deposition have been associated with several diseases like familial amyloid polyneuropathy and senile systemic amyloidosis. Inhibition of the fibril formation is considered a potential strategy for the therapeutic intervention. The effect of small water-soluble, hydrophobic ligand 2,4-dinitrophenol (2,4-DNP) on TTR amyloid formation has been tested. 2,4-DNP binds to TTR both at acidic and physiological pH, as shown by the quenching of TTR intrinsic fluorescence. Interestingly, 2,4-DNP not only binds to TTR at acidic pH but also inhibits amyloid fibril formation as shown by the light scattering and Congo red-binding assay. Inhibition of fibril formation by 2,4-DNP appears to be through the stabilization of TTR tetramer upon binding to the protein, which includes active site. These findings may have implications for the development of mechanism based small molecular weight compounds as therapeutic agents for the prevention/inhibition of the amyloid diseases.  相似文献   

2.
Unifying features of systemic and cerebral amyloidosis   总被引:6,自引:0,他引:6  
Amyloidosis is a generic term for a group of clinically and biochemically diverse diseases that are characterized by the deposition of an insoluble fibrillar protein in the extracellular space. Over 16 biochemically distinct amyloids are known. Despite this diversity, all amyloids have a particular ultrastructural and tinctorial appearance, a β-pleated sheet structure, and are codeposited with a group of amyloid-associated proteins. The most common amyloidosis is Alzheimer’s disease (AD), where Aβ is the main component of the amyloid. Recently it has been found that Aβ exists as a normal soluble protein (sAβ) in biological fluids. This links AD more closely to some of the systemic amyloidoses, where the amyloid precursor is found in the circulation normally. Numerous mutations have been found in the Aβ precursor (βPP) gene, associated with familial AD. Many mutations are also found in some of the hereditary systemic amyloidoses. For example, over 40 mutations in the transthyretin (TTR) gene are associated with amyloid. However, both Aβ and TTR related amyloid deposition can occur with no mutation. The pathogenesis of amyloid is complex, and appears to be associated with genetic and environmental risk factors that can be similar in the systemic and cerebral amyloidoses.  相似文献   

3.
The transthyretin amyloidoses are a subset of protein misfolding diseases characterized by the extracellular deposition of aggregates derived from the plasma homotetrameric protein transthyretin (TTR) in peripheral nerves and the heart. We have established a robust disease-relevant human cardiac tissue culture system to explore the cytotoxic effects of amyloidogenic TTR variants. We have employed this cardiac amyloidosis tissue culture model to screen 23 resveratrol analogs as inhibitors of amyloidogenic TTR-induced cytotoxicity and to investigate their mechanisms of protection. Resveratrol and its analogs kinetically stabilize the native tetramer preventing the formation of cytotoxic species. In addition, we demonstrate that resveratrol can accelerate the formation of soluble non-toxic aggregates and that the resveratrol analogs tested can bring together monomeric TTR subunits to form non-toxic native tetrameric TTR.  相似文献   

4.
The molecular investigation of the amyloidoses began in the mid-19th century with the observation of areas in human tissues obtained at autopsy that were homogeneous and eosinophilic with conventional stains but became blue when exposed to mixtures of iodine and sulfuric acid. The foci corresponded to regions formerly identified as "waxy" or lardaceous. Subsequent identification of the characteristic staining of the same tissues with metachromatic dyes such as crystal violet or with the cotton dye Congo red (particularly under polarized light) and thioflavins allowed the pathological classification of those tissues as belonging to a set of disorders known as the amyloidoses. Not unexpectedly, progress has reflected evolving technology and parallel advances in all fields of biological science. Investigation using contemporary methods has expanded our notions of amyloid proteins from being simply agents or manifestations of systemic, largely extracellular diseases to include "protein-only infection," the concept that "normal" functional amyloids might exist in eukaryotes and prokaryotes and that aggregatability may be an intrinsic structural price to be paid for some functional protein domains. We now distinguish between the amyloidoses, that is, diseases caused by the deposition of amyloid fibrils and amyloid proteins (i.e., purified or recombinant proteins that form amyloid fibrils in vitro), which may or may not be associated with disease in vivo.  相似文献   

5.
TTR (transthyretin) amyloidoses are diseases characterized by the aggregation and extracellular deposition of the normally soluble plasma protein TTR. Ex vivo and tissue culture studies suggest that tissue damage precedes TTR fibril deposition, indicating that early events in the amyloidogenic cascade have an impact on disease development. We used a human cardiomyocyte tissue culture model system to define these events. We previously described that the amyloidogenic V122I TTR variant is cytotoxic to human cardiac cells, whereas the naturally occurring, stable and non-amyloidogenic T119M TTR variant is not. We show that most of the V122I TTR interacting with the cells is extracellular and this interaction is mediated by a membrane protein(s). In contrast, most of the non-amyloidogenic T119M TTR associated with the cells is intracellular where it undergoes lysosomal degradation. The TTR internalization process is highly dependent on membrane cholesterol content. Using a fluorescent labelled V122I TTR variant that has the same aggregation and cytotoxic potential as the native V122I TTR, we determined that its association with human cardiomyocytes is saturable with a KD near 650 nM. Only amyloidogenic V122I TTR compete with fluorescent V122I for cell-binding sites. Finally, incubation of the human cardiomyocytes with V122I TTR but not with T119M TTR, generates superoxide species and activates caspase 3/7. In summary, our results show that the interaction of the amyloidogenic V122I TTR is distinct from that of a non-amyloidogenic TTR variant and is characterized by its retention at the cell membrane, where it initiates the cytotoxic cascade.  相似文献   

6.
Zhang Q  Kelly JW 《Biochemistry》2005,44(25):9079-9085
The marked variation in clinical expression and age of familial amyloid disease onset is not well understood. One possibility is that metabolite modification(s) of a disease-associated mutant protein can change the energetics and propensity for misfolding, influencing the disease course. Each subunit of the transthyretin (TTR) tetramer has a single Cys residue that can exist in the SH form or as a mixed disulfide with the amino acid Cys or the peptide glutathione or fragments of the latter. The stability and amyloidogenicity of the clinically most important TTR variants (V30M and V122I) in their SH oxidation state were compared with those of their mixed disulfide adducts. All the Cys-10 mixed disulfide conjugates exhibited substantially decreased protein stability (urea, pH 7) and a higher rate and extent of amyloidogenesis (slightly acidic conditions). We also investigated the amyloidogenicity and stability of a C10S/V30M TTR double mutant which lacks the ability to make mixed disulfides, but retains the disease-associated V30M mutation. Unlike V30M TTR, this double mutant is nonamyloidogenic in transgenic mice. Our in vitro data reveal that the C10S/V30M and V30M TTR homotetramers have identical amyloidogenicity and stability, implying that Cys-10 mixed disulfide formation enhances amyloidogenesis in V30M transgenic mice. Given the high proportion of TTR subunits having mixed disulfide modifications in human plasma ( approximately 50%), and the data within demonstrating their increased amyloidogenicity, we submit that disulfide metabolite modifications have the potential to influence the course of amyloidoses, including TTR amyloidoses caused by mutations.  相似文献   

7.

Background

Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease caused by the extracellular deposition of mutant transthyretin (TTR), with special involvement of the peripheral nervous system (PNS). Currently, hepatic transplantation is considered the most efficient therapy to halt the progression of clinical symptoms in FAP since more than 95% of TTR is produced by the liver. However, less invasive and more reliable therapeutic approaches have been proposed for FAP therapy, namely based on drugs acting as inhibitors of amyloid formation or as amyloid disruptors. We have recently reported that epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, is able to inhibit TTR aggregation and fibril formation, “in vitro” and in a cellular system, and is also able to disrupt pre-formed amyloid fibrils “in vitro”.

Methodology and Principal Findings

In the present study, we assessed the effect of EGCG subchronic administration on TTR amyloidogenesis “in vivo”, using well characterized animal models for FAP. Semiquantitative immunohistochemistry (SQ-IHC) and Western blot analysis of mice tissues after treatment demonstrated that EGCG inhibits TTR toxic aggregates deposition in about 50% along the gastrointestinal tract (GI) and peripheral nervous system (PNS). Moreover EGCG treatment considerably lowered levels of several biomarkers associated with non-fibrillar TTR deposition, namely endoplasmic reticulum (ER)-stress, protein oxidation and apoptosis markers. Treatment of old FAP mice with EGCG resulted not only in the decrease of non-fibrillar TTR deposition but also in disaggregation of amyloid deposits. Consistently, matrix metalloproteinase (MMP)-9 and serum amyloid P component (SAP), both markers of amyloid deposition, were also found reduced in treated old FAP mice.

Conclusions and Significance

The dual effect of EGCG both as TTR aggregation inhibitor and amyloid fibril disruptor together with the high tolerability and low toxicity of EGCG in humans, point towards the potential use of this compound, or optimized derivatives, in the treatment of TTR-related amyloidoses.  相似文献   

8.
M J Saraiva 《FEBS letters》2001,498(2-3):201-203
Over 70 transthyretin (TTR) mutations have been associated with hereditary amyloidoses, which are all autosomal dominant disorders with adult age of onset. TTR is the main constituent of amyloid that deposits preferentially in peripheral nerve giving rise to familial amyloid polyneuropathy (FAP), or in the heart leading to familial amyloid cardiomyopathy. Since the beginning of this decade the central question of these types of amyloidoses has been why TTR is an amyloidogenic protein with clinically heterogeneous pathogenic consequences. As a result of amino acid substitutions, conformational changes occur in the molecule, leading to weaker subunit interactions of the tetrameric structure as revealed by X-ray studies of some amyloidogenic mutants. Modified soluble tetramers exposing cryptic epitopes seem to circulate in FAP patients as evidenced by antibody probes recognizing specifically TTR amyloid fibrils, but what triggers dissociation into monomeric and oligomeric intermediates of amyloid fibrils is largely unknown. Avoiding tetramer dissociation and disrupting amyloid fibrils are possible avenues of therapeutic intervention based on current molecular knowledge of TTR amyloidogenesis and fibril structure.  相似文献   

9.
The systemic amyloidoses are a rare but deadly class of protein folding disorders with significant unmet diagnostic and therapeutic needs. The current model for symptomatic amyloid progression includes a causative role for soluble toxic aggregates as well as for the fibrillar tissue deposits. Although much research is focused on elucidating the potential mechanism of aggregate toxicity, evidence to support their existence in vivo has been limited. We report the use of a technique we have termed biological on-line tracer sedimentation (BOLTS) to detect abnormal high-molecular-weight complexes (HMWCs) in serum samples from individuals with systemic amyloidosis due to aggregation and deposition of wild-type transthyretin (senile systemic amyloidosis, SSA) or monoclonal immunoglobulin light chain (AL amyloidosis). In this proof-of-concept study, HMWCs were observed in 31 of 77 amyloid samples (40.3%). HMWCs were not detected in any of the 17 nonamyloid control samples subjected to BOLTS analyses. These findings support the existence of potentially toxic amyloid aggregates and suggest that BOLTS may be a useful analytic and diagnostic platform in the study of the amyloidoses or other diseases where abnormal molecular complexes are formed in serum.  相似文献   

10.
Transthyretin (TTR) is a tetrameric β-sheet-rich transporter protein directly involved in human amyloid diseases. Several classes of small molecules can bind to TTR delaying its amyloid fibril formation, thus being promising drug candidates to treat TTR amyloidoses. In the present study, we characterized the interactions of the synthetic triiodo L-thyronine analogs and thyroid hormone nuclear receptor TRβ-selective agonists GC-1 and GC-24 with the wild type and V30M variant of human transthyretin (TTR). To achieve this aim, we conducted in vitro TTR acid-mediated aggregation and isothermal titration calorimetry experiments and determined the TTR:GC-1 and TTR:GC-24 crystal structures. Our data indicate that both GC-1 and GC-24 bind to TTR in a non-cooperative manner and are good inhibitors of TTR aggregation, with dissociation constants for both hormone binding sites (HBS) in the low micromolar range. Analysis of the crystal structures of TTRwt:GC-1(24) complexes and their comparison with the TTRwt X-ray structure bound to its natural ligand thyroxine (T4) suggests, at the molecular level, the basis for the cooperative process displayed by T4 and the non-cooperative process provoked by both GC-1 and GC-24 during binding to TTR.  相似文献   

11.
Destabilization of the tetrameric fold of TTR (transthyretin) is important for aggregation of the protein which culminates in amyloid fibril formation. Many TTR mutations interfere with tetramer stability, increasing the amyloidogenic potential of the protein. The vast majority of proposed TTR fibrillogenesis inhibitors are based on in vitro assays with isolated protein, limiting their future use in clinical assays. In the present study we investigated TTR fibrillogenesis inhibitors using a cellular system that produces TTR intermediates/aggregates in the medium. Plasmids carrying wild-type TTR, V30M or L55P cDNA were transfected into a rat Schwannoma cell line and TTR aggregates were investigated in the medium using a dot-blot filter assay followed by immunodetection. Results showed that, in 24 h, TTR L55P forms aggregates in the medium, whereas, up to 72 h, wild-type TTR and V30M do not. A series of 12 different compounds, described in the literature as in vitro TTR fibrillogenesis inhibitors, were tested for their ability to inhibit L55P aggregate formation; in this system, 2-[(3,5-dichlorophenyl) amino] benzoic acid, benzoxazole, 4-(3,5-difluorophenyl) benzoic acid and tri-iodophenol were the most effective inhibitors, as compared with the reference iododiflunisal, previously shown by ex vivo and in vitro procedures to stabilize TTR and inhibit fibrillogenesis. Among these drugs, 2-[(3,5-dichlorophenyl) amino] benzoic acid and tri-iodophenol stabilized TTR from heterozygotic carriers of V30M in the same ex vivo conditions as those used previously for iododiflunisal. The novel cellular-based test herein proposed for TTR fibrillogenesis inhibitor screens avoids not only lengthy and cumbersome large-scale protein isolation steps but also artefacts associated with most current in vitro first-line screening methods, such as those associated with acidic conditions and the absence of serum proteins.  相似文献   

12.
Clinical aspects of systemic amyloid diseases   总被引:5,自引:0,他引:5  
Amyloidosis is a protein misfolding disorder in which soluble proteins aggregate as insoluble amyloid fibrils. Protein aggregates and amyloid fibrils cause functional and structural organ damage respectively. To date, at least 24 different proteins have been recognized as causative agents of amyloid diseases, localized or systemic. The two most common forms of systemic amyloidosis are light-chain (AL) amyloidosis and reactive AA amyloidosis due to chronic inflammatory diseases. beta(2)-microglobulin amyloidosis is a common complication associated with long-term hemodialysis. Hereditary systemic amyloidoses are a group of autosomal dominant disorders caused by mutations in the genes of several plasma proteins. Heterogeneity in clinical presentation, pattern of amyloid-related organ toxicity and rate of disease progression is observed among systemic amyloidoses. In particular, beta(2)-microglobulin presents unique clinical features compared to the other systemic forms. The phenotypic features of hereditary systemic amyloidoses may instead overlap those of the two more common forms of acquired amyloidoses mentioned above and therefore a correct diagnosis can not rely only on clinical grounds. Unequivocal identification of the deposited protein is essential in order to avoid misdiagnosis and inappropriate treatment. Amyloid deposits can be reabsorbed and organ dysfunction reversed if the concentration of the amyloidogenic protein is reduced or zeroed. At present, the most effective approach to treatment of the systemic amyloidoses involves shutting down, or substantially reducing the synthesis of the amyloid precursor, or, as in the case of beta(2)-microglobulin, promoting its clearance.  相似文献   

13.
Misfolding and amyloid formation of transthyretin (TTR) is implicated in numerous degenerative diseases. TTR misfolding is greatly accelerated under acidic conditions, and thus most of the mechanistic studies of TTR amyloid formation have been conducted at various acidic pH values (2–5). In this study, we report the effect of pH on TTR misfolding pathways and amyloid structures. Our combined solution and solid-state NMR studies revealed that TTR amyloid formation can proceed via at least two distinct misfolding pathways depending on the acidic conditions. Under mildly acidic conditions (pH 4.4), tetrameric native TTR appears to dissociate to monomers that maintain most of the native-like β-sheet structures. The amyloidogenic protein undergoes a conformational transition to largely unfolded states at more acidic conditions (pH 2.4), leading to amyloid with distinct molecular structures. Aggregation kinetics is also highly dependent upon the acidic conditions. TTR quickly forms moderately ordered amyloids at pH 4.4, while the aggregation kinetics is dramatically reduced at a lower pH of 2.4. The effect of the pathogenic mutations on aggregation kinetics is also markedly different under the two different acidic conditions. Pathogenic TTR variants (V30M and L55P) aggregate more aggressively than WT TTR at pH 4.4. In contrast, the single-point mutations do not affect the aggregation kinetics at the more acidic condition of pH 2.4. Given that the pathogenic mutations lead to more aggressive forms of TTR amyloidoses, the mildly acidic condition might be more suitable for mechanistic studies of TTR misfolding and aggregation.  相似文献   

14.
Transthyretin (TTR) is one of thirty non-homologous proteins whose misfolding, dissociation, aggregation, and deposition is linked to human amyloid diseases. Previous studies have identified that TTR amyloidogenesis can be inhibited through stabilization of the native tetramer state by small molecule binding to the thyroid hormone sites of TTR. We have evaluated a new series of β-aminoxypropionic acids (compounds 5–21), with a single aromatic moiety (aryl or fluorenyl) linked through a flexible oxime tether to a carboxylic acid. These compounds are structurally distinct from the native ligand thyroxine and typical halogenated biaryl NSAID-like inhibitors to avoid off-target hormonal or anti-inflammatory activity. Based on an in vitro fibril formation assay, five of these compounds showed significant inhibition of TTR amyloidogenesis, with two fluorenyl compounds displaying inhibitor efficacy comparable to the well-known TTR inhibitor diflunisal. Fluorenyl 15 is the most potent compound in this series and importantly does not show off-target anti-inflammatory activity. Crystal structures of the TTR∶inhibitor complexes, in agreement with molecular docking studies, revealed that the aromatic moiety, linked to the sp2-hybridized oxime carbon, specifically directed the ligand in either a forward or reverse binding mode. Compared to the aryl family members, the bulkier fluorenyl analogs achieved more extensive interactions with the binding pockets of TTR and demonstrated better inhibitory activity in the fibril formation assay. Preliminary optimization efforts are described that focused on replacement of the C-terminal acid in both the aryl and fluorenyl series (compounds 22–32). The compounds presented here constitute a new class of TTR inhibitors that may hold promise in treating amyloid diseases associated with TTR misfolding.  相似文献   

15.
In systemic amyloidoses, widespread deposition of protein as amyloid causes severe organ dysfunction. It is necessary to discriminate among the different forms of amyloid to design an appropriate therapeutic strategy. We developed a proteomics methodology utilizing two-dimensional polyacrylamide gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry and peptide mass fingerprinting to directly characterize amyloid deposits in abdominal subcutaneous fat obtained by fine needle aspiration from patients diagnosed as having amyloidoses typed as immunoglobulin light chain or transthyretin. Striking differences in the two-dimensional gel proteomes of adipose tissue were observed between controls and patients and between the two types of patients with distinct, additional spots present in the patient specimens that could be assigned as the amyloidogenic proteins in full-length and truncated forms. In patients heterozygotic for transthyretin mutations, wild-type peptides and peptides containing amyloidogenic transthyretin variants were isolated in roughly equal amounts from the same protein spots, indicative of incorporation of both species into the deposits. Furthermore novel spots unrelated to the amyloidogenic proteins appeared in patient samples; some of these were identified as isoforms of serum amyloid P and apolipoprotein E, proteins that have been described previously to be associated with amyloid deposits. Finally changes in the normal expression pattern of resident adipose proteins, such as down-regulation of alphaB-crystallin, peroxiredoxin 6, and aldo-keto reductase I, were observed in apparent association with the presence of amyloid, although their levels did not strictly correlate with the grade of amyloid deposition. This proteomics approach not only provides a way to detect and unambiguously type the deposits in abdominal subcutaneous fat aspirates from patients with amyloidoses but it may also have the capability to generate new insights into the mechanism of the diseases by identifying novel proteins or protein post-translational modifications associated with amyloid infiltration.  相似文献   

16.
Rational design of potent human transthyretin amyloid disease inhibitors   总被引:4,自引:0,他引:4  
The human amyloid disorders, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and senile systemic amyloidosis, are caused by insoluble transthyretin (TTR) fibrils, which deposit in the peripheral nerves and heart tissue. Several nonsteroidal anti-inflammatory drugs and structurally similar compounds have been found to strongly inhibit the formation of TTR amyloid fibrils in vitro. These include flufenamic acid, diclofenac, flurbiprofen, and resveratrol. Crystal structures of the protein-drug complexes have been determined to allow detailed analyses of the protein-drug interactions that stabilize the native tetrameric conformation of TTR and inhibit the formation of amyloidogenic TTR. Using a structure-based drug design approach ortho-trifluormethylphenyl anthranilic acid and N-(meta-trifluoromethylphenyl) phenoxazine 4, 6-dicarboxylic acid have been discovered to be very potent and specific TTR fibril formation inhibitors. This research provides a rationale for a chemotherapeutic approach for the treatment of TTR-associated amyloid diseases.  相似文献   

17.
The hallmark of familial amyloid polyneuropathy (FAP) is the presence of extracellular deposits of transthyretin (TTR) aggregates and amyloid fibers in several tissues, particularly in the peripheral nervous system. The molecular pathways to neurodegeneration in FAP still remain elusive; activation of nuclear factor kappaB, pro-inflammatory cytokines, oxidative stress, and pro-apoptotic caspase-3 has been demonstrated "in vivo" in clinical samples and in cell culture systems. In this study, we investigated the involvement of endoplasmic reticulum (ER) stress response in FAP by showing activation of the classical unfolded protein response pathways in tissues not specialized in TTR synthesis but presenting extracellular TTR aggregate and fibril deposition. We also proved cytotoxicity by Ca2+ efflux from the ER in cell cultures incubated with TTR oligomers. Taken together, these studies evidence ER stress associated with a extracellular signal in a misfolding disorder.  相似文献   

18.
Amyloidosis represents a group of diseases in which proteins undergo misfolding to form insoluble fibrils with subsequent tissue deposition. While almost all deposited amyloid fibers share a common nonbranched morphology, the affected end organs, clinical presentation, treatment strategies, and prognosis vary greatly among this group of diseases and are largely dependent on the specific amyloid precursor protein. To date, at least 27 precursor proteins have been identified to result in either local tissue or systemic amyloidosis, with nine of them manifesting in cardiac deposition and resulting in a syndrome termed "cardiac amyloidosis" or "amyloid cardiomyopathy." Although cardiac amyloidosis has been traditionally considered to be a rare disorder, as clinical appreciation and understanding continues to grow, so too has the prevalence, suggesting that this disease may be greatly underdiagnosed. The most common form of cardiac amyloidosis is associated with circulating amyloidogenic monoclonal immunoglobulin light chain proteins. Other major cardiac amyloidoses result from a misfolding of products of mutated or wild-type transthyretin protein. While the various cardiac amyloidoses share a common functional consequence, namely, an infiltrative cardiomyopathy with restrictive pathophysiology leading to progressive heart failure, the underlying pathophysiology and clinical syndrome varies with each precursor protein. Herein, we aim to provide an up-to-date overview of cardiac amyloidosis from nomenclature to molecular mechanisms and treatment options, with a particular focus on amyloidogenic immunoglobulin light chain protein cardiac amyloidosis.  相似文献   

19.
We previously produced a transgenic mouse line designated MT-hMet30 by introducing the human mutant transthyretin (TTR) gene carrying the mouse metallothionein promoter, and showed that the presence of human variant TTR is sufficient for amyloid deposition in various tissues of these transgenic mice. However, the expression pattern of human mutant transthyretin gene in the mouse was different from that in man. To analyse pathologic processes, it is essential to establish a transgenic mouse line in which the developmental and tissue- specific expression of the human mutant TTR gene is the same as in man. Thus, we produced two additional transgenic mouse lines carrying the human mutant TTR gene containing either 0.6 kb (0.6- hMet30) or 6.0 kb (6.0-hMet30) of the upstream region. The expression levels of 6.0-hMet30 gene in the liver and serum were the same as in man and about 10 times higher than those of 0.6- hMet30 gene. In both lines amyloid deposition was observed in similar tissues to human patients except for the peripheral and autonomic nervous tissues. The amyloid deposition started earlier and was more extensive in 6.0-hMet30 than 0.6-hMet30 mice, suggesting that the serum levels of human mutant TTR are correlated with the occurrence and degree of amyloid deposition, to some extent. Neither amyloid deposition nor degenerative changes were observed in the peripheral and autonomic nervous systems despite the transgene expression in the choroid plexus of the 6.0-hMet30 mice. In the 6.0-hMet30 mice, amyloid deposition started at 9 months of age, although the serum level of human mutant TTR reached the adult level at 1 month. These results suggest that intrinsic environmental factors other than the mutant gene are involved in the late-onset deposition of amyloid fibrils. Transgenic mice described here should be useful for analysing such factors  相似文献   

20.
Familial amyloid polyneuropathy (FAP) is an autosomal dominant disease characterized by deposition of amyloid related to the presence of mutations in the transthyretin (TTR) gene. TTR is mainly synthesized in liver, choroid plexuses of brain and pancreas and secreted to plasma and cerebrospinal fluid (CSF). Although it possesses a sequon for N‐glycosylation N‐D‐S at position 98, it is not secreted as a glycoprotein. The most common FAP‐associated mutation is TTR V30M. In a screening for monoclonal antibodies developed against an amyloidogenic TTR form, we detected a distinct TTR with slower electrophoretic mobility in Western of plasma from carriers of the V30M mutation, not present in normal plasma. Mass spectrometry analyses of this slower migrating TTR (SMT) identified both wild‐type and mutant V30M; SMT was undetectable upon N‐glycosidase F treatment. Furthermore, SMT readily disappeared in the plasma of V30M ‐ FAP patients after liver transplantation and appeared in plasma of transplanted domino individuals that received a V30M liver. SMT was also detected in plasma, but not in CSF of transgenic mice for the human V30M mutation. A hepatoma cell line transduced to express human V30M did not present the SMT modification in secretion media. Glycosylated TTR was absent in fibrils extracted from human kidney V30M autopsy tissue or in TTR aggregates extracted from the intestine of human TTR transgenic mice. Studies on the metabolism of this novel, glycosylated TTR secreted from FAP liver are warranted to provide new mechanisms in protein quality control and etiopathogenesis of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号