首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tripartite receptor comprising the external region of the erythropoietin (Epo) receptor, the transmembrane and JAK-binding domains of the gp130 subunit of the interleukin-6 (IL-6) receptor, and a seven amino acid STAT1 recruitment motif (Y440) from the interferon (IFN)-gamma receptor, efficiently mediates an IFN-gamma-like response. An analogous completely foreign chimeric receptor in which the Y440 motif is replaced with the Y905 motif from gp130 also mediates an IFN-gamma-like response, but less efficiently. The IFNGR1 signal-transducing subunit of the IFN-gamma receptor is tyrosine phosphorylated through the chimeric receptors and the endogenous IL-6 and OSM receptors. Cross phosphorylation of IFNGR1 is not, however, required for the IFN-gamma-like response through the chimeric receptors, nor does it mediate an IFN-gamma-like response to IL-6 or OSM. The data argue strongly for modular JAK/STAT signalling and against any rigid structural organization for the "pathways" involved. They emphasize the likely high degree of overlap between the signals generated from disparate JAK-receptor complexes and show that relatively minor changes in such complexes can profoundly affect the response.  相似文献   

2.
3.
4.
The inflammatory infiltrate of the gastric mucosa associated with Helicobacter pylori infection increases the presence of the pro-inflammatory cytokine IL-6 that activates both the SHP-2/ERK/MAPK and the JAK/STAT signalling pathways. Furthermore, the ectopic expression of CDX2 is detected in pre-neoplasic lesions associated with decreased levels of SOX2, and we found that in gastric adenocarcinomas their expression is inversely correlated. To determine the role of IL-6 in the regulation of CDX2, MKN45 that constitutively expresses p-STAT3, and NUGC-4 gastric cancer cell lines were treated with IL-6, which induced the CDX2 up-regulation and SOX2 down-regulation. ChIP assays determined that in IL-6-treated cells, c-JUN and p-STAT3 bound to CDX2 promoter in MKN45 cells whereas in NUGC-4 cells, p-STAT3 binds to and c-JUN releases from the CDX2 promoter. Specific inhibition of STAT3 and ERK1/2 phosphorylation through AG490 and U0126, respectively, and STAT3 down-regulation using shRNA verified that the SHP-2/ERK/MAPK pathway regulates the expression of CDX2 in basal conditions, and the CDX2 up-regulation by IL-6 is through the JAK/STAT pathway in NUGC-4 cells whereas in MKN45 cells both pathways contribute to the CDX2 up-regulation. In conclusion, the signalling pathways activated by IL-6 have a crucial role in the regulation of CDX2 that is a key factor in the process of gastric carcinogenesis, suggesting that the inflammatory infiltrate in the gastric mucosa is relevant in this process and a potential target for new therapeutic approaches.  相似文献   

5.
6.
IL (interleukin)-22 is an IL-10-related cytokine; its main biological activity known thus far is the induction of acute phase reactants in liver and pancreas. IL-22 signals through a receptor that is composed of two chains from the class II cytokine receptor family: IL-22R (also called ZcytoR11/CRF2-9) and IL-10Rbeta (CRF2-4), which is also involved in IL-10 signaling. In this report, we analyzed the signal transduction pathways activated in response to IL-22 in a rat hepatoma cell line, H4IIE. We found that IL-22 induces activation of JAK1 and Tyk2 but not JAK2, as well as phosphorylation of STAT1, STAT3, and STAT5 on tyrosine residues, extending the similarities between IL-22 and IL-10. However our results unraveled some differences between IL-22 and IL-10 signaling. Using antibodies specific for the phosphorylated form of MEK1/2, ERK1/2, p90RSK, JNK, and p38 kinase, we showed that IL-22 activates the three major MAPK pathways. IL-22 also induced serine phosphorylation of STAT3 on Ser(727). This effect, which is not shared with IL-10, was only marginally affected by MEK1/2 inhibitors, indicating that other pathways might be involved. Finally, by overexpressing a STAT3 S727A mutant, we showed that serine phosphorylation is required to achieve maximum transactivation of a STAT responsive promoter upon IL-22 stimulation.  相似文献   

7.
The cell surface antigen CD90 has recently been established as a promising marker for liver cancer stem cells. This study aimed to investigate potential implications of SHH/Gli signalling in CD90+ liver cancer stem cells. Correlation of the expression of SHH signalling components and CD90 in liver cancer cells and clinical tissues, as well as in enriched CD90+ liver cancer stem cells and the TCGA database, were analysed by quantitative RT‐PCR, Western blotting and flow cytometry. Functional analysis was conducted by siRNA‐mediated CD90, Gli1 and Gli3 gene knockdown, SHH treatment and application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody in CD90+ liver cancer stem cells, followed by cell proliferation, migration, sphere formation and tumorigenicity assays. CD90 expression exhibited a high positive correlation with Gli1 and Gli3 in multiple liver cancer cell lines and human cancerous liver tissues, both of which showed a significant increase in liver cancer. Analysis of TCGA data revealed an association of CD90, Gli1 and Gli3 with a short overall survival and positive correlation between CD90 expression and Gli3 expression level. The stem cell potentials of CD90+ 97L liver cancer cells were greatly impaired by Gli1/3 knockdown with siRNA but enhanced by SHH treatment. Application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody showed the CD90 and SHH/Gli‐regulated liver cancer stem cell functions were mediated by the IL6/JAK2/STAT3 pathway. The stem cell properties of CD90+ liver cancer cells are regulated by the downstream SHH/Gli and IL6/JAK2/STAT3 signalling pathways.  相似文献   

8.
9.
10.
11.
A subset of cytokines triggers the JAK‐STAT pathway to exert various functions such as the induction of inflammation and immune responses. The receptors for these cytokines are dimers/trimers of transmembrane proteins devoid of intracellular kinase activity. Instead, they rely on Janus kinases (JAKs) for signal transduction. Classical JAK‐STAT signalling involves phosphorylation of cytokine receptors'' intracellular tyrosines, which subsequently serve as docking sites for the recruitment and activation of STATs. However, there is evidence to show that several cytokine receptors also use a noncanonical, receptor tyrosine‐independent path to induce activation of STAT proteins. We identified two main alternative modes of STAT activation. The first involves an association between a tyrosine‐free region of the cytokine receptor and STATs, while the second seems to depend on a direct interaction between JAK and STAT proteins. We were able to identify the use of noncanonical mechanisms by almost a dozen cytokine receptors, suggesting they have some importance. These alternative pathways and the receptors that employ them are discussed in this review.  相似文献   

12.
13.
14.
15.
16.
Innate immune responses triggered by the prototypical inflammatory stimulus LPS are mediated by TLR4 and involve the coordinated production of a multitude of inflammatory mediators, especially IL-6, which signals via the shared IL-6 cytokine family receptor subunit gp130. However, the exact role of IL-6, which can elicit either proinflammatory or anti-inflammatory responses, in the pathogenesis of TLR4-driven inflammatory disorders, as well as the identity of signaling pathways activated by IL-6 in a proinflammatory state, remain unclear. To define the contribution of gp130 signaling events to TLR4-driven inflammatory responses, we combined genetic and therapeutic approaches based on a series of gp130(F/F) knock-in mutant mice displaying hyperactivated IL-6-dependent JAK/STAT signaling in an experimental model of LPS/TLR4-mediated septic shock. The gp130(F/F) mice were markedly hypersensitive to LPS, which was associated with the specific upregulated production of IL-6, but not TNF-α. In gp130(F/F) mice, either genetic ablation of IL-6, Ab-mediated inhibition of IL-6R signaling or therapeutic blockade of IL-6 trans-signaling completely protected mice from LPS hypersensitivity. Furthermore, genetic reduction of STAT3 activity in gp130(F/F):Stat3(+/-) mice alleviated LPS hypersensitivity and reduced LPS-induced IL-6 production. Additional genetic approaches demonstrated that the TLR4/Mal pathway contributed to LPS hypersensitivity and increased IL-6 production in gp130(F/F) mice. Collectively, these data demonstrate for the first time, to our knowledge, that IL-6 trans-signaling via STAT3 is a critical modulator of LPS-driven proinflammatory responses through cross-talk regulation of the TLR4/Mal signaling pathway, and potentially implicate cross-talk between JAK/STAT and TLR pathways as a broader mechanism that regulates the severity of the host inflammatory response.  相似文献   

17.
The biological activities of type I interferons (IFNs) are mediated by their binding to a heterodimer receptor complex (IFNAR1 and IFNAR2), resulting in the activation of the JAK (JAK1 and TYK2)-STAT (1, 2, 3, 5 isotypes) signalling pathway. Although several studies have indicated that IFN-alpha and IFN-beta can activate complexes containing STAT6, the biological role of this activation is still unknown. We found that exposure of hepatoma cells (HuH7 and Hep3B) to IFN-alpha or IFN-beta led to the activation of STAT6. Activated STAT6 in turn induced the formation of STAT2: STAT6 complexes, which led to the secretion of IL-1Ra. The activation of STAT6 by type I IFN in hepatocytes was mediated by JAK1 and Tyk2. In addition, IFN-alpha or IFN-beta significantly enhanced the stimulatory effect of IL-1beta on production of IL-1Ra. The present study suggests a novel function of IFN-alpha and IFN-beta signalling in human hepatocytes. Our results provide evidence for the mechanism how IFN-alpha and IFN-beta modulate inflammatory responses through activation of STAT6 and production of secreted IL-1Ra.  相似文献   

18.
Cell lines that are mutated in interferon (IFN) responses have been critical in establishing an essential role for the JAK family of nonreceptor tyrosine kinases in interferon signalling. Mutant gamma1A cells have previously been shown to be complemented by overexpression of JAK2. Here, it is shown that these cells carry a defect in, and can also be complemented by, the beta-subunit of the IFN-gamma receptor, consistent with the hypothesis that the mutation in these cells affects JAK2-receptor association. In contrast, mutant gamma2A cells lack detectable JAK2 mRNA and protein. By using gamma2A cells, the role of various domains and conserved tyrosine residues of JAK2 in IFN-gamma signalling was examined. Individual mutation of six conserved tyrosine residues, mutation of a potential phosphatase binding site, or mutation of the arginine residue in the proposed SH2-like domain had no apparent effect on signalling in response to IFN-gamma. Results with deletion mutants, however, indicated that association of JAK2 with the IFN-gammaR2 subunit requires the amino-terminal region but not the pseudokinase domain. Consistent with this, in chimeras with JAK1, the JAK2 amino-terminal region was required for receptor association and STAT1 activation. Conversely, a JAK1-JAK2 chimera with the amino-terminal domains of JAK1 linked to the pseudokinase and kinase domains of JAK2 is capable of reconstituting JAK-STAT signalling in response to IFN-alpha and -gamma in mutant U4C cells lacking JAK1. The specificity of the JAKs may therefore lie mainly in their structural interaction with different receptor and signalling proteins rather than in the substrate specificity of their kinase domains.  相似文献   

19.
20.
The development of acute pancreatitis (AP) is triggered by acinar events, but the subsequent extra-acinar events, particularly a distinct immune response, appear to determine its severity. Cytokines modulate this immune response and are derived not only from immunocytes but also from pancreatic acinar cells. We studied whether pancreatic acinar cells were also capable of responding to cytokines. The JAK/STAT-pathway represents the main effector for many cytokines. Therefore, expression and regulation of JAK and STAT proteins were investigated in rat pancreatic acinar cells. Western blotting showed expression of JAK1, JAK2, Tyk2, and STAT1, STAT2, STAT3, STAT5, STAT6. In addition, STAT1 was reversibly tyrosine-phosphorylated upon the procedure of acinar cell isolation. In contrast, STAT3-phosphorylation occurred spontaneously after pancreas removal and was not reversible within 8 h. STAT1 phosphorylation was also observed upon treatment with IFN-gamma but not upon EGF, TNF-alpha or IL-6, and inhibited by the JAK2-inhibitor AG-490. Immunohistochemistry revealed cytoplasmic expression of unphosphorylated STAT1 in untreated acinar cells and nuclear translocation of phosphorylated STAT1 following IFN-gamma-treatment. Interestingly, although CCK leads to the activation of multiple stress pathways in pancreatic acinar cells, we found no influence of CCK on phosphorylation of STAT1, STAT3, or STAT5 in the pancreas. In conclusion, our data provide further evidence that pancreatic acinar cells are able to interact with immune cells. Besides stimulating immune cells via cytokine secretion, acinar cells are in turn capable of responding to IFN-gamma via JAK2 and STAT1 which may have an impact on the development of AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号