首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Characterization and cloning of the gerC locus of Bacillus subtilis 168   总被引:6,自引:0,他引:6  
A Bacillus subtilis gerC spore germination mutant demonstrating a temperature-sensitive response to L-alanine as germinant has been characterized in detail. The gerC58 mutation is 50% cotransformed with aroB in the gene order gerC-aroB-trpC. The mutation is responsible for a severe growth defect which is manifest at all growth temperatures and is most extreme on rich media. A second, unlinked, mutation in the original strain suppressed this growth defect, but spores of the suppressed strain failed to germinate in alanine at 42 degrees C. As this germination defect is dependent on the presence of the gerC58 allele, it is likely to be the direct result of a mutant gerC protein. The gerC gene therefore appears to have a role in both spore germination and vegetative cell growth. A gene library of BclI-digested B. subtilis chromosomal DNA was constructed in phage vector phi 105J27. A derivative containing the gerC region was obtained by complementation of the growth defect of an unsuppressed gerC58 strain. This phage contained a 6.3 kb insert of bacterial DNA, which is above the reported packaging limit of the phage. It failed to form visible plaques, although it could be handled as a prophage and sufficient phage particles be isolated to allow characterization of the insert. A deletion derivative generated in vitro and carrying only 2.9 kb of insert DNA also complemented the gerC defect. This gerC locus is the second locus to be implicated in alanine-stimulated germination. The first, gerA, is a developmentally controlled operon whose gene products are present only in the spore. This study of gerC, in contrast, reveals a role in spore germination for a normally essential vegetative protein.  相似文献   

2.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.  相似文献   

3.
4.
Holographic sensors for the detection of Bacillus species spore germination and vegetative growth are described. Reflection holograms were fabricated using a diffusion method for the distribution of ultra-fine silver bromide grains into pre-formed polymer films, followed by holographic recording using a frequency doubled Nd:YAG (532 nm) laser. Changes in holographic replay wavelength or diffraction intensity were used to characterise the swelling behaviour or structural integrity of a range of holographic matrices in response to various extracellular products of bacterial spore germination and vegetative metabolism. Divalent metal ion-sensitive holograms containing a methacrylated analogue of nitrilotriacetic acid (NTA) as the chelating monomer were successfully used to monitor Ca2+ ions released during B. subtilis spore germination in real-time, which was within minutes of sample addition; the holographic response manifested as a 16 nm blue-shift in diffraction wavelength over the progress of germination. Similarly, pH-sensitive holograms comprising methacrylic acid (MAA) as the ionisable monomer were responsive to changes in pH associated with early vegetative metabolism following germination of B. megaterium spores; a visually perceptible blue-shift in holographic replay wavelength of 75 nm was observed. Casein and starch-based holographic matrices, prepared by co-polymerisation of the appropriate substrate with acrylamide, were used to detect exo-enzymes released during later stages of B. megaterium and B. subtilis vegetative cell growth; holographic responses of both matrices were visible as a reduction in diffraction intensity due to progressive fringe disruption caused by enzymatic cleavage. The combined monitoring of various germination and growth events using the range of aforementioned holographic sensors provides a novel, comprehensive means for the detection of viable bacterial spores.  相似文献   

5.
6.
Bacillus subtilis strains UVSSP-42-1 (hcr42 ssp1) and UVSSP-1-1 (hcr1 ssp1) are ultraviolet (UV) radiation sensitive both as dormant spores and as vegetative cells. These strains are unable to excise cyclobutane-type dimers from the deoxyribonucleic acid (DNA) of irradiated vegetative cells and fail to remove spore photoproduct from the DNA of irradiated spores either by excision (controlled by gene hcr) or by spore repair (controlled by gene ssp1). When irradiated soon after spore germination, these strains excise dimers, but not spore photoproduct, from their DNA. This process, termed germinative excision repair, functions only transiently in the germination phase and is responsible for the high UV resistance of germinated spores and for their temporary capacity to host cell reactivate irradiated phages infecting them. The recA1 mutation confers higher UV sensitivity to the germinated spores, but does not interfere with dimer removal by germinative excision repair.  相似文献   

7.
Plasmid pUB110, isolated from vegetative cells of Bacillus subtilis, has an average of 34 negative supertwists (tau av = -34). This value falls to -30 early in sporulation, and the plasmid in the mother cell compartment maintains a tau av of -30. However, the plasmid within the developing forespore becomes much more negatively supercoiled, reaching a tau av of -47 in the dormant spore. This increased negative supercoiling in the forespore plasmid takes place in parallel with the synthesis of small, acid-soluble spore proteins, alpha and beta; and the plasmid from spores lacking small, acid-soluble proteins alpha and beta has a tau av of -40. The large increase in negative supercoiling of spore plasmid was also observed with Bacillus megaterium and in B. subtilis containing a plasmid with an origin different from that of pUB110. During spore germination plasmid pUB110 rapidly relaxed back to the tau av value characteristic of vegetative cells. It is possible that the observed changes in forespore plasmid topology are involved in modulating gene expression, DNA photochemistry, or both of these parameters in this compartment.  相似文献   

8.
9.
10.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

11.
Penicillin-binding protein (PBP) 5* is produced by Bacillus subtilis only during sporulation and is believed to be required for synthesis of the peptidoglycan-like cortex layer of the spore. The structural gene (dacB) for PBP 5* was insertionally mutagenized by integration of a plasmid bearing an internal fragment of the gene, and the phenotype of the null mutant was characterized. The mutant had no apparent vegetative growth or germination defect, but it produced extremely heat-sensitive spores. This property is consistent with a defect in the amount or assembly of the cortex and supports the hypothesis that PBP 5* is required for synthesis of this structure. Analysis of the progeny after spontaneous excision of the integrated plasmid led to the conclusion that expression of the dacB gene was required only in the mother cell compartment during sporulation, which is also consistent with a role for PBP 5* in cortex synthesis and with its location in the outer forespore membrane. Genetic mapping located dacB midway between aroC (206 degrees) and lys (210 degrees) on the B. subtilis chromosome. This is a region where there are no other known spo, ger, or PBP genes. In related studies, we found that a null mutant of dacA, the structural gene for vegetative PBP 5, produced normal heat-resistant spores, which suggests that this PBP is not essential for cortex synthesis. In addition, a candidate for another sporulation-specific PBP was revealed on gels at approximately the same position as PBP 5*. The two PBPs could be distinguished by immunoassays.  相似文献   

12.
GerD of Bacillus subtilis is a protein essential for normal spore germination with either L-alanine or a mixture of L-asparagine, D-glucose, D-fructose, and potassium ions. GerD's amino acid sequence suggests that it may be a lipoprotein, indicating a likely location in a membrane. Location in the spore's outer membrane seems unlikely, since removal of this membrane does not result in a gerD spore germination phenotype, suggesting that GerD is likely in the spore's inner membrane. In order to localize GerD within spores, FLAG-tagged GerD constructs were made, found to be functional in spore germination, and detected in immunoblots of spore extracts as not only monomers but also dimers and trimers. Upon fractionation of spore extracts, GerD-FLAG was found in the inner membrane fraction from dormant spores and was present at approximately 2,000 molecules/spore. GerD-FLAG in the inner membrane fraction was solubilized by Triton X-100, suggesting that GerD is a lipoprotein, and the protein was also solubilized by 0.5 M NaCl. GerD-FLAG was not processed proteolytically in a B. subtilis strain lacking gerF (lgt), which encodes prelipoprotein diacylglycerol transferase (Lgt), indicating that when GerD does not have a diacylglycerol moiety, signal sequence processing does not occur. However, unprocessed GerD-FLAG still gave bands corresponding to monomers and dimers of slightly higher molecular weight than that of GerD-FLAG from a strain with Lgt, further suggesting that GerD is a lipoprotein. Upon spore germination, much GerD became soluble and then appeared to be degraded as the germinated spores outgrew and initiated vegetative growth. All of these results suggest that GerD is a lipoprotein associated with the dormant spore's inner membrane that may be released in some fashion from this membrane upon spore germination.  相似文献   

13.
The outermost proteinaceous layer of bacterial spores, called the coat, is critical for spore survival, germination, and, for pathogenic spores, disease. To identify novel spore coat proteins, we have carried out a preliminary proteomic analysis of Bacillus subtilis and Bacillus anthracis spores, using a combination of standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation and improved two-dimensional electrophoretic separations, followed by matrix-assisted laser desorption ionization-time of flight and/or dual mass spectrometry. We identified 38 B. subtilis spore proteins, 12 of which are known coat proteins. We propose that, of the novel proteins, YtaA, YvdP, and YnzH are bona fide coat proteins, and we have renamed them CotI, CotQ, and CotU, respectively. In addition, we initiated a study of coat proteins in B. anthracis and identified 11 spore proteins, 6 of which are candidate coat or exosporium proteins. We also queried the unfinished B. anthracis genome for potential coat proteins. Our analysis suggests that the B. subtilis and B. anthracis coats have roughly similar numbers of proteins and that a core group of coat protein species is shared between these organisms, including the major morphogenetic proteins. Nonetheless, a significant number of coat proteins are probably unique to each species. These results should accelerate efforts to develop B. anthracis detection methods and understand the ecological role of the coat.  相似文献   

14.
大蒜汁对枯草芽孢杆菌抑制作用的研究   总被引:2,自引:0,他引:2  
通过测定菌体浓度、抑菌圈直径和2,6-吡啶二羧酸(DPA)含量,研究大蒜汁对枯草芽孢杆菌(BS)的营养体及芽孢生长、发芽的影响,并采用响应面分析法优化确定大蒜汁抑菌适宜处理条件.结果表明:(1)大蒜汁对BS的最低抑菌浓度(MIC)和最低杀菌浓度(MBC)分别为0.4%和1%;(2)大蒜汁抑制作用主要是延长了BS的生长延缓期,0.3%的大蒜汁可使BS延缓期增加12 h;(3)大蒜汁对BS的芽孢和DPA形成有明显的抑制作用,但对芽孢的发芽无抑制作用;(4)加热温度超过35℃、时间大于5 h时处理的大蒜汁,对BS的抑制作用明显降低.在pH 3~8范围的大蒜汁都有很好的抑菌活性,但pH>8.5时抑菌活性急剧下降;(5)响应面试验分析法优化确立了大蒜汁对BS抑制的二次回归方程和适宜处理条件,即在pH 4.5、温度45℃加热处理5 h的大蒜汁抑菌效果最好.  相似文献   

15.
Deoxyribonucleic acid (DNA) polymerase III is not detectable in Bacillus subtilis spores; the enzyme activity appears 20 to 30 min after spore activation and rapidly increases just before the onset of the first round of DNA replication (30 min later); the level of polymerase III further increases and reaches its maximum (on a per-genome basis) when the cells enter the vegetative phase of growth; this level is six- to eightfold higher than the one observed during germination. In the stationary phase, the polymerase III drops to levels comparable to those found in germinating spores at the first round of replication. On the contrary, DNA polymerase I is present at appreciable levels in the dormant spore; it increases during vegetative growth by a factor of three and, during the stationary phase, reaches its maximum level which is sixfold higher than that observed in the spores. The block of protein synthesis during vegetative growth does not cause an appreciable reduction of the two enzymes (in absolute terms), showing that the regulation of their levels is probably not due to a balance between synthesis and breakdown. These results indicate that polymerase III is probably one of the factors controlling the initiation of DNA synthesis during spore germination.  相似文献   

16.
SUMMARY: Well washed spore preparations of Bacillus cereus and B. subtilis were suspended in various nutrient broths, soil extracts, autoclaved soil of various moisture contents, and in two inorganic solutions, phosphate buffer, pH 7·2 and Ringer's solution. These were incubated at 8°, 5°, 1° and 0° for periods up to 270 days. Periodic total and spore counts on plates indicated a progressive decrease in each, associated with germination taking place in all conditions except in the two inorganic media. Enzymic tests indicated secretion and activity of nitratase and gelatinase and, with spores of B. pasteurii , urease, as a result of germination. B. subtilis germinated to a greater extent than B. cereus in each of the nutrient media. Germination of both organisms at 5° was also observed in L - and D -alanine: in the latter it was probably the result of racemization to the L -form.  相似文献   

17.
18.
Y W Zhang  T Koyama    K Ogura 《Journal of bacteriology》1997,179(4):1417-1419
The two proteins (GerC1 and GerC3) encoded by the gerC locus of Bacillus subtilis, which has been shown to be involved in vegetative cell growth and spore germination, were identified as dissociable heterodimers of the heptaprenyl diphosphate synthase involved in the biosynthesis of the side chain of menaquinone-7.  相似文献   

19.
20.
The GerAA, -AB, and -AC proteins of the Bacillus subtilis spore are required for the germination response to L-alanine as the sole germinant. They are likely to encode the components of the germination apparatus that respond directly to this germinant, mediating the spore's response; multiple homologues of the gerA genes are found in every spore former so far examined. The gerA operon is expressed in the forespore, and the level of expression of the operon appears to be low. The GerA proteins are predicted to be membrane associated. In an attempt to localize GerA proteins, spores of B. subtilis were broken and fractionated to give integument, membrane, and soluble fractions. Using antibodies that detect Ger proteins specifically, as confirmed by the analysis of strains lacking GerA and the related GerB proteins, the GerAA protein and the GerAC+GerBC protein homologues were localized to the membrane fraction of fragmented spores. The spore-specific penicillin-binding protein PBP5*, a marker for the outer forespore membrane, was absent from this fraction. Extraction of spores to remove coat layers did not release the GerAC or AA protein from the spores. Both experimental approaches suggest that GerAA and GerAC proteins are located in the inner spore membrane, which forms a boundary around the cellular compartment of the spore. The results provide support for a model of germination in which, in order to initiate germination, germinant has to permeate the coat and cortex of the spore and bind to a germination receptor located in the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号