共查询到20条相似文献,搜索用时 46 毫秒
1.
Durand V Renaudineau Y Pers JO Youinou P Jamin C 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(7):3996-4007
We have reported that human autoantibodies reacting with the polymorphonuclear neutrophil (PMN)-anchored FcgammaRIIIb (CD16) protect these cells from spontaneous apoptosis. In this study, we used anti-CD16 F(ab')(2) to delineate the mechanism(s) whereby the PMN life span is extended. As documented using four methods, CD16 cross-linking impeded spontaneous apoptosis, whereas anti-CD18 F(ab')(2) exerted no effect. Incubation of PMNs with anti-CD16 prevented the up-regulation of beta(2) integrins, particularly CD11b, which is the alpha-chain of complement receptor type 3, but also CD18, which is its beta-chain, as well as CD11a and CD11c. Anti-CD16-conditioned supernatant of PMNs diminished the percentage of annexin V-binding fresh PMNs after another 18 h in culture, whereas the negative control anti-CD18 had no effect. The expression of mRNA for G-CSF and GM-CSF was induced by anti-CD16, followed by the release of G-CSF and GM-CSF in a dose-dependent manner. Anti-G-CSF and anti-GM-CSF mAbs abrogated the antiapoptotic effect of the related growth factors. The delay in apoptosis was accompanied by a down-regulated expression of Bax, and a partial reduction of caspase-3 activity. These data suggest an autocrine involvement of anti-CD16-induced survival factors in the rescue of PMNs from spontaneous apoptosis. Thus, apoptosis of aged PMNs can be modulated by signaling through FcgammaRIIIb, which may occur in patients with PMN-binding anti-FcgammaRIIIb autoantibodies. 相似文献
2.
Radiosensitivity of human bone marrow granulocyte-macrophage progenitor cells and stromal colony-forming cells: effect of dose rate 总被引:1,自引:0,他引:1
T J FitzGerald M McKenna L Rothstein C Daugherty K Kase J S Greenberger 《Radiation research》1986,107(2):205-215
Study of the radiation biology of human bone marrow hematopoietic cells has been difficult since unseparated bone marrow cell preparations also contain other nonhematopoietic stromal cells. We tested the clonogenic survival after 0.05 or 2 Gy/min X irradiation using as target cells either fresh human bone marrow or nonadherent hematopoietic cells separated from stromal cells by the method of long-term bone marrow culture (LTBMC). Sequential nonadherent cell populations removed from LTBMC were enriched for hematopoietic progenitors forming granulocyte-macrophage colony-forming unit culture (GM-CFUc) that form colonies at Day 7, termed GM-CFUc7, or Day 14 termed GM-CFUc14. The results demonstrated no effect of dose rate on the D0 or n of fresh marrow GM-CFUc (colonies greater than or equal to 50 cells) after plating in a source of their obligatory growth factor, colony-stimulating factor (CSF) (GM-CFUc7 irradiated at 2 Gy/min, D0 = 1.02 +/- 0.05, n = 1.59 +/- 0.21; at 0.05 Gy/min, D0 = 1.07 +/- 0.03, n = 1.50 +/- 0.04; GM-CFUc14 at 2 Gy/min, D0 = 1.13 +/- 0.03, n = 1.43 +/- 0.03; at 0.05 Gy/min, D0 = 1.16 +/- 0.04, n = 1.34 +/- 0.05). There was a decrease in the radiosensitivity of GM-CFUc7 and GM-CFUc14 derived from nonadherent cells of long-term bone marrow cultures compared to fresh marrow that was observed at both dose rates. In contrast, adherent stromal cells irradiated at low compared to high dose rate showed a significantly greater radioresistance (Day 19 colonies of greater than or equal to 50 cells; at 2 Gy/min, D0 = 0.99 Gy, n = 1.03; at 0.05 Gy/min D0 = 1.46 Gy, n = 2.00). These data provide strong evidence for a difference in the radiosensitivity of human marrow hematopoietic progenitor compared to adherent stromal cells. 相似文献
3.
Interleukin 1 stimulates human endothelial cells to produce granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor 总被引:14,自引:0,他引:14
V C Broudy K Kaushansky J M Harlan J W Adamson 《Journal of immunology (Baltimore, Md. : 1950)》1987,139(2):464-468
Endothelial cells are a potent source of hematopoietic growth factors when stimulated by soluble products of monocytes. Interleukin 1 (IL 1) is released by activated monocytes and is a mediator of the inflammatory response. We determined whether purified recombinant human IL 1 could stimulate cultured human umbilical vein endothelial cells to release hematopoietic growth factors. As little as 1 U/ml of IL 1 stimulated growth factor production by the endothelial cells, and increasing amounts of IL 1 enhanced growth factor production in a dose-dependent manner. Growth factor production increased within 2 to 4 hr and remained elevated for more than 48 hr. To investigate the molecular basis for these findings, oligonucleotide probes for granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), and multi-CSF were hybridized to poly(A)-containing RNA prepared from unstimulated and IL 1-stimulated endothelial cells. Significant levels of GM-CSF and G-CSF, but not M-CSF or multi-CSF, mRNA were detected in the IL 1-stimulated endothelial cells. Biological assays performed on the IL 1-stimulated endothelial cell-conditioned medium confirmed the presence of both GM- and G-CSF. These results demonstrate that human recombinant IL 1 can stimulate endothelial cells to release GM-CSF and G-CSF, and provide a mechanism by which IL 1 could modulate both granulocyte production and function during the course of an inflammatory response. 相似文献
4.
Petrovskaia LE Kriukova EA Kaiushin AL Rodina AV Moskaleva EIu Korobko VG 《Bioorganicheskaia khimiia》2002,28(5):440-446
To study the structure-function relationship of the human granulocyte-macrophage colony-stimulating factor (GM-CSF), genes were constructed that encode its three deletion mutants: D1, a mutant with the deletion of six amino acid residues (37-42) some of which are a part of a beta-structural region; D2, a mutant with the deletion of the unstructured six-aa sequence of a loop (45-50); and D3, a mutant with the deletion of 14 aa residues (37-50) corresponding to the A-B loop and encoded by the second exon of the gmcsf gene. The expression products of these genes in E. coli were accumulated in a fraction of insoluble proteins. The secondary structures of the mutant proteins were similar to that of the full-size GM-CSF, but the biological activity of the deletion mutants was 130 times lower than that of the GM-CSF: they stimulated the proliferation of the TF-1 cell line at 3 ng/ml concentration. The resulting proteins displayed antagonistic properties toward the full-size GM-CSF, with the inhibition degree of its colony-stimulating activity being 27%. A decrease in the mutant activity in the row D2 > D1 > D3 implies the importance of the conserved hydrophobic residues involved in the formation of the beta-structure for the formation of the GM-CSF functional conformation. 相似文献
5.
Characterization of the human granulocyte-macrophage colony-stimulating factor receptor 总被引:14,自引:0,他引:14
J DiPersio P Billing S Kaufman P Eghtesady R E Williams J C Gasson 《The Journal of biological chemistry》1988,263(4):1834-1841
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine derived from activated T cells, endothelial cells, fibroblasts, and macrophages. It stimulates myeloid and erythroid progenitors to form colonies in semisolid medium in vitro, as well as enhancing multiple differentiated functions of mature neutrophils, macrophages, and eosinophils. We have examined the binding of human GM-CSF to a variety of responsive human cells and cell lines. The most mature myelomonocytic cells, specifically human neutrophils, macrophages, and eosinophils, express the highest numbers of a single class of high affinity receptors (Kd approximately 37 pM, 293-1000 sites/cell). HL-60 and KG-1 cells exhibit an increase in specific binding at high concentrations of GM-CSF; computer analysis of the data is nonetheless consistent with a single class of high affinity binding sites with a Kd approximately 43 pM and 20-450 sites/cell. Dimethyl sulfoxide induces a 3-10-fold increase in high affinity receptors expressed in HL-60 cells, coincident with terminal neutrophilic differentiation. Finally, binding of 125I-GM-CSF to fresh peripheral blood cells from six patients with chronic myelogenous leukemia was analyzed. In three of six cases, binding was similar to the nonsaturable binding observed with HL-60 and KG-1 cells. GM-CSF binding was low, or in some cases, undetectable on myeloblasts obtained from eight patients with acute myelogenous leukemia. The observed affinities of the receptor for GM-CSF are consistent with all known biological activities. Affinity labeling of both normal neutrophils and dimethyl sulfoxide-induced HL-60 cells with unglycosylated 125I-GM-CSF yielded a band of 98 kDa, implying a molecular weight of approximately 84,000 for the human GM-CSF receptor. 相似文献
6.
7.
Human granulocyte-macrophage colony-stimulating factor (hGM-CSF), also known as sargramostim or molgramostin, is a cytokine
that functions as a hematopoietic cell growth factor. Here we report a near complete assignment for the backbone and side
chain resonances for the mature polypeptide. 相似文献
8.
S C Clark 《International journal of cell cloning》1988,6(6):365-377
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has emerged as an important regulation for hematopoietic cell development and function. Within the myeloid lineages, GM-CSF serves as a growth and developmental factor for intermediate-stage progenitors between early, interleukin 3-responsive and late granulocyte colony-stimulating factor-responsive precursors. GM-CSF also serves as an activator of circulating effector cells. The ability of GM-CSF to induce monocyte expression of tumor necrosis factor, interleukin 1 and other factors, further ties this hormone into a network of cytokines that interact to regulate many hematologic and immunologic responses. The availability of large quantities of recombinant GM-CSF now provides the opportunity and challenge not only for unraveling the mechanisms regulating hematopoiesis, but also for developing new therapies for enhancement of host defense against infection that were not previously possible. 相似文献
9.
Ying Xue Zhe Xing Sølve Hellem Kristina Arvidson Kamal Mustafa 《Biomedical engineering online》2009,8(1):34-9
Background
Improved understanding of the interactions between bone cells and endothelial cells involved in osteogenesis should aid the development of new strategies for bone tissue engineering. The aim of the present study was to determine whether direct communication between bone marrow stromal cells (MSC) and human umbilical vein endothelial cells (EC) could influence the osteogenic potential of MSC in osteogenic factor-free medium. 相似文献10.
V S Astakhova 《Biulleten' eksperimental'no? biologii i meditsiny》1988,105(3):338-340
The results of the cloning of fibroblastic colony-forming units (CFU-F) from the bone marrow of normal sites of the spongy bones were analysed in 250 orthopaedic patients. It has been shown that the activity of CFU-F was changing during a year. The number of negative results of CFU-F's cloning were 33%, 60% and 50% in March, April and October respectively. The absolute values of CFU-F cloning were lower in March and April than in other months. The seasonal changes in the activity of CFU-F in human bone marrow should be taken into consideration when studying the physiology and pathology of the bone and hemopoietic system, and in clinical practice. 相似文献
11.
Dominique Modrowski Abderrahim Lomri Pierre J. Marie 《Journal of cellular physiology》1998,177(1):187-195
We recently demonstrated that granulocyte-macrophage colony-stimulating factor (GM-CSF) is an autocrine growth factor for human osteoblastic (hOB) cells. Since GM-CSF is a member of the heparin-binding factor family, we examined the interactions between GM-CSF and glycosaminoglycans (GAGs) present in the osteoblast microenvironment. Using a bioassay in which the mitogenic activity of recombinant human (rh) GM-CSF was measured after incubation in the presence of an hOB cell layer or extracellular matrix (ECM) produced by these cells, we showed that rhGM-CSF binds to GAG components present in the ECM and that the bound rhGM-CSF retains its ability to stimulate hOB cell proliferation. Heparan sulfate compounds on the hOB cell surface were also found to sequester GM-CSF. Moreover, treatment with sodium chlorate, an inhibitor of GAG sulfation, suppressed the mitogenic activity of rhGM-CSF on hOB cells. This inhibitory effect was rescued by a low dose of heparin. Heparin was also found to promote the effect of rhGM-CSF on hOB cell proliferation, allowing nonmitogenic high doses of rhGM-CSF to stimulate hOB cell growth. Western blot analysis showed that undersulfation of cellular GAGs by chlorate inhibited the increased tyrosine phosphorylation of proteins involved in GM-CSF signaling in cloned immortalized hOB cells. The data demonstrate that GM-CSF binds to proteoglycans on the hOB cell surface and in ECM produced by these cells and that the bound GM-CSF is biologically active. Furthermore, this study shows that cellular proteoglycans play an essential role in GM-CSF signaling and biological activity in hOBs. J. Cell. Physiol. 177:187–195, 1998. © 1998 Wiley-Liss, Inc. 相似文献
12.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor that stimulates myeloid cell proliferation and maturation and enhances the function of terminally differentiated effector cells. Phase I and II clinical trials have demonstrated mild to moderate toxicities at doses of less than 30 micrograms/kg/day. These studies suggest a potential role for this growth factor to stimulate myelopoiesis in patients with aplastic anemia, myelodysplastic syndromes, AIDS, chemotherapy-induced myelosuppression, chronic neutropenia, and following bone marrow transplantation. The potential clinical uses of GM-CSF will depend on results of studies designed to optimize its therapeutic efficacy. 相似文献
13.
When murine T lymphocyte clones were cultured with purified recombinant IL 2, a dose-dependent increase in the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) was observed. Whereas these clones produced both GM-CSF and multi-lineage CSF (multi-CSF) when cultured with concanavalin A, IL 2 induced the production of GM-CSF in the virtual absence of detectable multi-CSF. In addition, IL 2 synergistically enhanced the production of both GM-CSF and multi-CSF by some antigen- or Con-A-stimulated clones. Like Con-A-induced CSF production, GM-CSF production in the presence of IL 2 required protein synthesis but could occur in the absence of proliferation by the clone. Analysis of dose-response curves for stimulation of CSF production by Con A in the presence and absence of IL 2 suggested that Con A and IL 2 activated GM-CSF synthesis by different mechanisms. These results indicate that the coordinate production of two factors by a single T cell clone stimulated with Con A can be dissociated when the clone is stimulated with IL 2. 相似文献
14.
Levels of human serum granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor under pathological conditions 总被引:3,自引:0,他引:3
Fusayuki Omori Seiichi Okamura Kazuya Shimoda Takeshi Otsuka Mine Harada Yoshiyuki Niho 《Biotherapy》1992,4(2):147-153
Levels of serum granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) in patients with various leukocyte disorders were estimated by enzyme linked immunosorbent assay (ELISA). Some cases of acute myelogenous leukemia and aplastic anemia showed elevated serum levels of G-CSF and/or GM-CSF, whereas almost all of 23 healthy controls showed G-CSF and GM-CSF levels lower than 100 pg/ml. High levels of both types of CSF were noted in patients with granulocytosis due to infection. These levels became lower after resolution of the infection. Daily changes in serum CSF levels were also examined in a patient with autoimmune neutropenia, and it was found that the peripheral neutrophilic granulocyte count changed almost in parallel with the serum G-CSF level but not with GM-CSF, following the pattern with a delay of about 4–5 h, suggesting the possibility that G-CSF mainly regulates peripheral neutrophil circulation. 相似文献
15.
To determine the extent accessory cells mediate the effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on human hemopoietic progenitors in vitro, we added this hemopoietin to liquid cultures of single CD34-positive marrow cells. These were selected on a fluorescence-activated cell sorter using the HPCA-1 (My10) antibody. Myeloid, erythroid and a few mixed clones developed in 13% of wells in the apparent absence of accessory cells at the beginning of culture. Although accessory cells were generated quickly from the myeloid progenitors and could have mediated the action of rhGM-CSF, this was not the case in the majority of the erythroid clones in which no other cell types were recorded. We conclude that rhGM-CSF can act directly on a subset of erythroid progenitors and probably induces a substantial number of myeloid clones directly. 相似文献
16.
A Ia Fridenshte?n N V Latsinik Iu F Gorskaia E A Luriia 《Biulleten' eksperimental'no? biologii i meditsiny》1990,110(11):509-510
In 24 hours adherent marrow cell cultures (AMCC) were represented by single stretched fibroblasts. In non-feeder-supplemented AMCC most of the CFU-f remained single fibroblasts or passed through 1-3 cell doublings [correction of dudlings]. The colony stimulating activity of irradiated marrow cells was found to be diffuse across the Millipore filter, which seems to indicate that haemopoietic marrow cells produce a colony stimulating factor which is required for triggering the CFU-f from the Go-period of the cell cycle into cell proliferation. 相似文献
17.
18.
Down-regulation of osteoprotegerin production in bone marrow macrophages by macrophage colony-stimulating factor 总被引:5,自引:0,他引:5
Macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) induce the differentiation of bone marrow macrophages (BMMs) into osteoclasts. To delineate mechanisms involved, the effect of M-CSF on the production of osteoprotegerin (OPG), decoy receptor of RANKL, in BMMs was investigated. Mouse bone marrow cells were cultured with M-CSF for 4 days and adherent cells formed were used as BMMs. BMMs were cultured with or without M-CSF, and analyzed for expression of OPG and receptor activator of NF-kappaB (RANK; receptor for RANKL) mRNAs by real-time polymerase chain reaction and secretion of OPG by enzyme-linked immunosorbent assay. BMMs expressed macrophage markers, CD115 (c-fms), Mac-1 and F4/80, and showed phagocytotic activity. In addition, BMMs expressed OPG mRNA and secreted OPG into medium. M-CSF inhibited both the OPG mRNA expression and the OPG secretion dose-dependently and reversibly. The expression of RANK mRNA was not significantly affected by M-CSF. The results showed that M-CSF suppresses the OPG production in BMMs, which may increase the sensitivity of BMMs to RANKL. 相似文献
19.
Vascular endothelial growth factor (VEGF) is a secreted cytokine that plays a major role in the formation and maintenance of the hemopoietic and vascular compartments. VEGF and its receptors, VEGFR-1 and VEGFR-2, have been found to be expressed on subsets of normal and malignant hemopoietic cells, but the role of the individual receptors in hemopoiesis requires further study. Using a VEGFR-2 fusion protein that can be dimerized with a synthetic drug, we were able to specifically examine the effects of VEGFR-2 signaling in hemopoietic cells in vivo. Mice transplanted with bone marrow transduced with this inducible VEGFR-2 fusion protein demonstrated expansion of myeloid cells (Gr-1+, CD11b+). Levels of myeloid progenitors were also increased following VEGFR-2 activation, through autocrine and paracrine mechanisms, as measured by clonogenic progenitor assays. VEGFR-2 activation induced expression of GM-CSF and increased serum levels in vivo. Abrogation of GM-CSF activity, either with neutralizing Abs or by using GM-CSF-null hemopoietic cells, inhibited VEGFR-2-mediated myeloid progenitor activity. Our findings indicate that VEGF signaling through VEGFR-2 promotes myelopoiesis through GM-CSF-dependent and -independent mechanisms. 相似文献
20.
Bone marrow mesenchymal stromal cells (BM-MSCs) are multipotent cells capable of differentiating toward osteoblatic and adipocytic phenotypes. BM-MSCs play several key roles including bone remodeling, establishment of hematopoietic niche and immune tolerance induction. Here, we investigated the effect of resveratrol (RSV), a therapeutically promising natural polyphenol, on the commitment of human BM-MSCs primary cultures. Cell differentiation was evaluated by means of morphological analysis, specific staining and expression of osteogenic and adipocytic master genes (Runx-2, PPARγ). To maintain BM-MSC multipotency, all experiments were performed on cells at very early passages. At any concentration RSV, added to standard medium, did not affect the phenotype of confluent BM-MSCs, while, when added to osteogenic or adipogenic medium, 1 μM RSV enhances the differentiation toward osteoblasts or adipocytes, respectively. Conversely, the addition of higher RSV concentration (25 μM) to both differentiation media resulted exclusively in BM-MSCs adipogenesis. Surprisingly, the analysis of RSV molecular effects demonstrated that the compound completely substitutes insulin, a key component of adipogenic medium. We also observed that RSV treatment is associated to enhanced phosphorylation of CREB, a critical effector of insulin adipogenic activity. Finally, our observations contribute to the mechanistic elucidation of the well-known RSV positive effect on insulin sensitivity and type 2 diabetes mellitus. 相似文献