首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Bidirectional sodium fluxes across toad bladder were measured after eliminating active transport with ouabain. Mucosal sodium concentration,C m , was progressively reduced (from 114 to 3mm) while serosal sodium remained constant. Potential difference was maintained at zero by current passage. The ratio,Q, of the bulk permeability coefficient for sodium,P, to the tracer sodium permeability coefficientP *, was found to remain constant asC m decreased. Equations were derived on this basis for bidirectional fluxes and forP andP * as functions ofC m , which corresponded closely to the observed data. The explanation for the observed value ofQ and its constancy under these conditions is uncertain.  相似文献   

2.
Biological elimination of volatile xenobiotic compounds in biofilters   总被引:7,自引:0,他引:7  
Biofiltration is a technique which is frequently applied for the odour abatement of waste gases. This technique is based on the ability of microorganisms (generally bacteria, and to a small extent moulds and yeasts) to degrade several organic as well as inorganic compounds to mineral end-products, like water and carbon dioxide. In the case of biofiltration, microorganisms are attached to suited packing materials in the filter, which contain the inorganic nutrients necessary for microbial growth. In order to make biofiltration applicable on a larger scale in process industry, it is necessary to find microorganisms able to eliminate compounds which are strange to life, the so-called xenobiotics. At the Eindhoven University of Technology microorganisms were isolated for the elimination of a number of xenobiotics, e.g. aromatic compounds and chlorinated hydrocarbons.Both the microkinetics of the biodegradation in aqueous batch systems and the macrokinetics of biofilters were studied. Special attention was paid to the influence of the superficial gas velocity and the organic load on the filter bed's elimination capacity. Also the discontinuous operation of biofilters is discussed.Nomenclature C 1],C 1,0,C í mol/m3 liquid phase concentration - K s mol/m3 saturation constant - Y kg/kmol yield coefficient - t, t d time - md–1 maximum growth rate - X, X 0 g/m3 microorganism concentration - P gPa partial vapour pressure - H Pa m3/mol Henry's law constant - m (-) distribution coefficient - C g,C g,max mol/m3 gas phase concentration - R J (mol K) gas constant - T K temperature - (-) gas phase- and liquid phase volume ratio - m3/(m2 h) superficial gas velocity - H m height of the filter bed - h m height in the filter bed In memory of Dick van Zuidam  相似文献   

3.
The stability and, consequently, the lifetime of immobilized enzymes (IME) are important factors in practical applications of IME, especially so far as design and operation of the enzyme reactors are concerned. In this paper a model is presented which describes the effect of intraparticle diffusion on time stability behaviour of IME, and which has been verified experimentally by the two-substrate enzymic reaction. As a model reaction the ethanol oxidation catalysed by immobilized yeast alcohol dehydrogenase was chosen. The reaction was performed in the batch-recycle reactor at 303 K and pH-value 8.9, under the conditions of high ethanol concentration and low coenzyme (NAD+) concentration, so that NAD+ was the limiting substrate. The values of the apparent and intrinsic deactivation constant as well as the apparent relative lifetime of the enzyme were calculated.The results show that the diffusional resistance influences the time stability of the IME catalyst and that IME appears to be more stabilized under the larger diffusion resistance.List of Symbols C A, CB, CE mol · m–3 concentration of coenzyme NAD+, ethanol and enzyme, respectively - C p mol · m3 concentration of reaction product NADH - d p mm particle diameter - D eff m2 · s–1 effective volume diffusivity of NAD+ within porous matrix - k d s–1 intrinsic deactivation constant - K A, KA, KB mol · m–3 kinetic constant defined by Eq. (1) - K A x mol · m–3 kinetic constant defined by Eq. (5) - r A mol · m–3 · s–1 intrinsic reaction rate - R m particle radius - R v mol · m–3 · s–1 observed reaction rate per unit volume of immobilized enzyme - t E s enzyme deactivation time - t r s reaction time - V mol · m–3 · s–1 maximum reaction rate in Eq. (1) - V x mol · m–3 · s–1 parameter defined by Eq. (4) - V f m3 total volume of fluid in reactor - w s kg mass of immobilized enzyme bed - factor defined by Eqs. (19) and (20) - kg · m–3 density of immobilized enzyme bed - unstableness factor - effectiveness factor - Thiele modulus - relative half-lifetime of immobilized enzyme Index o values obtained with fresh immobilized enzyme  相似文献   

4.
Kinetic behavior of penicillin acylase immobilized on acrylic carrier   总被引:1,自引:0,他引:1  
The usefulness of Lilly's kinetic equation to describe penicillin G hydrolysis performed by immobilized penicillin acylase onto the acrylic carrier has been shown. Based on the experimental results characteristic kinetic constants have been estimated. The effect of noncompetitive inhibition of 6-amino penicillanic acid has not been found. Five components of reaction resistance have been defined. These components were also estimated for the reaction of the native enzyme as well as the Boehringer preparation.List of Symbols C E g/m3 enzyme concentration - C P,C Q mol/m3 product concentrations - C S mol/m3 substrate concentration - C SO mol/m3 initial substrate concentration - K A mol/m3 constant which defines the affinity of a substrate to the enzyme - K iS mol/m3 substrate inhibitory constant - K iP mol/m3 PhAA inhibitory constant - K iQ mol/m3 6-APA inhibitory constant - k 3 mol/g/min constant rate of dissociation of the active complex - R(1) concentrational component of reaction resistance - R(2) resistance component derived from substrate affinity - R(3) resistance component due to the inhibition of the enzyme by substrate - R(4) resistance component due to the inhibition of the enzyme by PhAA - R(5) resistance component due to inhibition of the enzyme by 6-APA - r = dCs/dt mol/m3 min rate of reaction - t min reaction time - (i) relative resistance of reaction  相似文献   

5.
The balance equations pertaining to the modelling of batch reactors performing an enzyme-catalyzed reaction in the presence of enzyme deactivation are developed. The functional form of the solution for the general situation where both the rate of the enzyme-catalyzed reaction and the rate of enzyme deactivation are dependent on the substrate concentration is obtained, as well as the condition that applies if a maximum conversion of substrate is sought. Finally, two examples of practical interest are explored to emphasize the usefulness of the analysis presented.List of Symbols C E mol/m3 concentration of active enzyme - C E,O mol/m3 initial concentration of active enzyme - C S mol/m3 concentration of substrate - C S,O mol/m3 initial concentration of substrate - C S,min mol/m3 minimum value for the concentration of substrate - k 1/s first order rate constant associated with conversion of enzyme/substrate complex into product - k 1 1/s first order deactivation constant of enzyme (or free enzyme) - k 2 1/s first order deactivation constant of enzyme in enzyme/substrate complex form - K m mol/m3 Michaelis-Menten constant - p mol/(m3s) time derivative of C S - q mol/m3 auxiliary variable - t s time elapsed after reactor startup Greek Symbols 1/s univariate function expressing the dependence of the rate of enzyme deactivation on C S - mol/m3 dummy variable of integration - mol/m3 dummy variable of integration - 1/s univariate function expressing the dependence of the rate of substrate depletion on C S - m3/(mol s) derivative of with respect to C S  相似文献   

6.
The enzyme glucose oxidase (GO) was covalently immobilized onto a poly(vinyl alcohol) hydrogel, cross-linked with glutardialdehyde and a polyazonium salt. To compare the kinetic parameters of immobilized GO with the known kinetic parameters of soluble GO, the diffusion cell method was used.Between two compartments, containing solutions with different glucose concentrations, a GO-containing hydrogel membrane was placed. Simultaneous diffusion through and enzymatic reaction in the membrane occurred. In this way diffusional effects of the membrane could be eliminated from the effective kinetic parameters to yield the inherent kinetic parameters.It appeared that the enzymatic reaction is independent of the oxygen concentration at oxygen concentrations 0.22 mol m–3 (Michaelis constant for oxygen < 0.22 mol m–3). Further, the Michaelis constant for glucose does not change dramatically after immobilizing the enzyme. The maximal reaction rate is depending on the enzyme concentration. As the enzyme concentration in the membrane is not exactly known (mainly due to leakage of enzyme out of the membrane during membrane preparation), only an estimation of the turnover number can be made.The diffusion cell method is easy to carry out. Still, some recommendations can be made on the performance.List of Symbols g , 0x partition coefficient of glucose and oxygen, respectively - thickness of the wetted membrane (m) - A m surface area of membrane (m–2) - C constant (mol2 m–3) - c g , c 0x concentration of glucose and oxygen, respectively (mol m–3) - c g,0 c g, glucose concentration at the filter-paper/membrane interface next to compartment A and B, respectively (mol m–3) - c g, A c g, B glucose concentration in compartment A and B, respectively (mol m–3) - c GO glucose oxidase concentration (mol m–3) - D eff effective diffusion coefficient (m2 s–1) - D m , D sl diffusion coefficient in, respectively, the membrane and the solution layer (m2 s–1) - d dl , d df , d sl thickness of, respectively, the diffusion layer, the filter-paper and the solution layer (m) - h B initial slope of concentration versus time curve of compartment B (mol m–3 s–1) - J flux (mol m–2 s–1) - J 0 flux in the membrane at membrane/filter-paper interface next to compartment A and B, respectively (mol m–2 s–1) - J A , J B flux leaving compartment A and entering compartment B, respectively (mol m–2 s–1) - J m flux through the membrane (mol m–2 s–1) - k total mass transfer coefficient (m s–1) - k 1 , k 2 rate constant of a particular reaction step (m3 mol–1 s–1) - k–1, k–2 rate constant of a particular reaction step (s–1) - k cat (intrinsic) catalytic constant of turnover number (s–1) - k cat * inherent catalytic constant, determined by inserting D m (s–1) - k cat ** inherent catalytic constant, determined by inserting D eff (s–1) - k m (g) (intrinsic) Michaelis constant for glucose (mol m–3) - k m (o) (intrinsic) Michaelis constant for oxygen (mol m–3) - k m * (g) inherent Michaelis constant for glucose (mol m–3) - k m * (o) inherent Michaelis constant for oxygen (mol m–3) - m GO number of moles of GO present (mol) - P m permeability of glucose in the mebrane (m s–1) - P eff effective permeability (m s–1) - V volume (m3) - v 0 initial reaction velocity (mol m–3 s–1) - V max ** inherent maximal reaction velocity, determined by inserting Deff (mol m–3 s–1) - x distance (m)  相似文献   

7.
Investigation of disintegration of yeast Saccharomyces cerevisiae in the laboratory batch perl mill with a bell-shaped impeller was carried out. The number of non-damaged cells, changing in time was determined using hemocytometer (Thom's chamber).To describe kinetics of the disintegration process the differential equation was applied: where N p the number of non-damaged cells in the sample, [number of cells/ml] t time, [s] m,k constants.The effect of three operating parameters: rotation frequency of the impeller shaft n, filling of the mill with disintegrating elements (ballotini) S k and the initial concentration of yeast cells in the suspension C 0 on the process of disintegration was analyzed.For S k =0.5, m=1 and dependence of constant k on the rotation frequency of the impeller and suspension concentration were obtained. For S k =0.6 and 0.7 the values of m were higher than 1. The effect of rotation frequency of the impeller and filling of the mill, with ballotini on constant k and exponent m was determined.List of Symbols a, b constants - a 1, b 1, c 1, d 1 constants - C 0 initial concentration of suspension g/ml - C concentration of cell suspension g/ml - k constant disintegration rate 1/s; N 0 1-m /s - m variable in the equation - N 0 initial number of cells no. of cells/ml - N p number of non-damaged cells no. of cells/ml - r process rate g/ml·s - X(t) disintegration degree % - , variables in the equation - z variable in the equation - S k degree of filling the mill with disintegrating elements  相似文献   

8.
The balance equations pertaining to the modelling of a CSTR performing an enzyme-catalyzed reaction in the presence of enzyme deactivation are developed. Combination of heuristic correlations for the size-dependent cost of equipment and the purification-dependent cost of recovery of product with the mass balances was used as a basis for the development of expressions relating a (suitably defined) dimensionless economic parameter with the optimal outlet substrate concentration under the assumption that overall production costs per unit mass of product were to be minimized. The situation of Michaelis-Menten kinetics for the substrate depletion and first order kinetics for the deactivation of enzyme (considering that the free enzyme and the enzyme in the enzyme/substrate complex deactivate at different rates) was explored, and plots for several values of the parameters germane to the analysis are included.List of Symbols C E mol m–3 concentration of active enzyme - C E,0 mol m–3 initial concentration of active enzyme - C p mol m–3 concentration of product of interest - C s mol m–3 concentration of substrate - C s,0 mol m–3 initial concentration of substrate - I $ capital cost of equipment - k d s–1 deactivation constant of free enzyme - k d s–1 deactivation constant of enzyme in enzyme/substrate complex - K m mol m–3 Michaelis-Menten constant - K m dimensionless counterpart of K m - k r s–1 rate constant associated with conversion of enzyme/substrate complex into product - M w kg mol–1 molecular weight of product of interest - P $ kg–1 cost of recovery of product of interest in pure form - Q m3s–1 volumetric flow rate - V m3 volume of reactor - X $ kg–1 global manufacture cost of product of interest in pure form - X dimensionless counterpart of X Greek Symbols 1 $ m–1.8 constant - 2 $ m–3 constant - t s useful life of CSTR - 0 ratio of initial concentrations of enzyme and substrate - ratio of deactivation constant of free enzyme to rate constant of depletion of substrate - ratio of deactivation constants - univariate function expressing the dependence of the rate of enzyme deactivation on C S - univariate function expressing the dependence of the rate of substrate depletion on C S - dimensionless economic parameter  相似文献   

9.
Summary Measurements of the transepithelial potential (Vint-Vext) across the gills of Brown Trout,Salmo trutta, were made in solutions of a range of pH and calcium concentrations. The potential was strongly dependent on external pH, being negative in neutral solutions but positive in acid solutions. The addition of calcium to the external medium produced a positive shift in potential in all but very acid media (pH 4.0–3.5), where very little change was seen. The gill membrane appears to act as a hydrogen electrode having a very high permeability to H+ ions, and the potential behaves as a diffusion potential. The presence of calcium reduced the permeability to both H+ and Na+ ions but even at a calcium concentration of 8.0 mM/l the permeability ratio H+/Na+ was still more than 900. The transepithelial potential is shown to be diffusional in origin and is discussed in terms of the relative permeability of the gill to H+, Na+ and Cl ions. Sodium fluxes across the gills were measured and provide the basis for a theoretical consideration of Na+, Cl and H+ fluxes across the gills in neutral and acid solutions. The positive potential at low pH largely accounts for the increased loss of sodium from fish in these conditions.  相似文献   

10.
Summary To assess the active components of sodium flux across toad bladder as a function of transepithelial potential, unidirectional sodium fluxes between identical media were measured before and after adding sufficient ouabain (1.89×10–3 m) to eliminate active transport, while clamping transepithelial potential to 0, 100 or 150 mV. Evidence was adduced that ouabain does not alter passive fluxes, and that fluxes remain constant if ouabain is not added. Hence, the ouabain-inhibitable fluxes represent fluxes through the active path. Results were analyzed by a set of equations, previously shown to describe adequately passive fluxes under electrical gradients in this tissue, here modified by the insertion ofE, the potential at which bidirectional sodium fluxes ( E and E ) through the active pathway are equal. According to these equations, E and E are the logarithmic mean of bidirectional fluxes through the active path at any potential, and the flux ratio in this path is modified by a constant factorQ ia, which represents the ratio of the bulk diffusion coefficient to the tracer diffusion coefficient in this pathway. The data are shown to conform closely to these equations.Q ia averages 2.54. Hence, serosal-to-mucosal flux vanishes rapidly as potential falls belowE. MeanE in these experiments was 158±1 mV. Thus, linear dependence of net flux in both active and passive pathways on potential is present, even though the sodium fluxes in both paths fail to conform to the Ussing flux ratio equation.Q i p<1 in the passive path (qualitatively similar to exchange diffusion) andQ ia>1 in the active path (as in single file pore diffusion). Both of these features tend to reduce the change in serosal-to-mucosal sodium flux induced by depolarization from spontaneous potential to zero potential (short-circuiting).  相似文献   

11.
The solute flows were studied in a double-membrane osmotic-diffusive cell, in which two membranes mounted in horizontal planes separate three compartments (l,m,r) containing the non-homogeneous, non-electrolytic binary and ternary solutions. The volume of inter-membrane compartment (m), which is the infinitesimally layer of solution, and volume of external compartments (l and r) fulfill the conditions V m 0 and V l =V r , respectively. In an initial moment, the solution concentrations satisfy the condition (C o s ) l < (C o s ) m >(C o s ) r. The double-membrane osmotic-diffusive cell is composed of two complexes: boundary layer/membrane/boundary layer, mounted in horizontal planes. In the cell, solute flux was measured as a function of concentration and gravitational configuration. The linear dependencies of the solute flux on concentration difference in binary solutions and nonlinear – in ternary solutions were obtained. It was shown that the double-membrane osmotic-diffusive cell has rectifying and amplifying properties of solute flows.  相似文献   

12.
A comprehensive methodology is presented for the design of reactors using immobilized enzymes as catalysts. The design is based on material balances and rate equations for enzyme action and decay and considers the effect of mass transfer limitations on the expression of enzyme activity. The enzymatic isomerization of glucose into fructose with a commercial immobilized glucose isomerase was selected as a case study. Results obtained are consistent with data obtained from existing high-fructose syrup plants. The methodology may be extended to other cases, provided sound expressions for enzyme action and decay are available and a simple flow pattern within the reactor might be assumed.List of Symbols C kat/kg specific activity of the catalyst - D m2/s substrate diffusivity within the catalyst particle - Dr m reactor diameter - d d operating time of each reactor - E kat initial enzyme activity - E i kat initial enzyme activity in each reactor - F m3/s process flowrate - F i m3/s reactor feed flowrate at a given time - F 0 m3/s initial feed flowrate to each reactor - H number of enzyme half-lives used in the reactors - K mole/m3 equilibrium constant - K S mole/m3 Michaelis constant for substrate - K P mole/m3 Michaelis constant for product - K m mole/m3 apparent Michaelis constant f(K, K s, Kp, s0) - k mole/s · kat reaction rate constant - k d d–1 first-order thermal inactivation rate constant - L m reactor height - L r m height of catalyst bed - N R number of reactors - P i kg catalyst weight in each reactor - p mole/m3 product concentration - R m particle radius - R P ratio of minimum to maximum process flowrate - r m distance to the center of the spherical particle - s mole/m3 substrate concentration - s 0i mole/m3 substrate concentration at reactor inlet - s 0 mole/m3 bulk substrate concentration - s mole/m3 apparent substrate concentration - T K temperature - t d time - t i d operating time for reactor i - t s d time elapsed between two successive charges of each reactor - V m3 reactor volumen - V m mole/m3 s maximum apparent reaction rate - V p mole/m3 s maximum reaction rate for product - V R m3 actual volume of catalyst bed - V r m3 calculated volume of catalyst bed - V S mol/m3 s maximum reaction rate for substrate - v mol/m3 s initial reaction rate - v i m/s linear velocity - v m mol/m3 s apparent initial reaction rate f(Km, s,Vm) - X substrate conversion - X eq substrate conversion at equilibrium - =s/K dimensionless substrate concentration - 0=s0/K bulk dimensionless substrate concentration - eq=seq/K dimensionless substrate concentration at equilibrium - local effectiveness factor - mean integrated effectiveness factor - Thiéle modulus - =r/R dimensionless radius - s kg/m3 hydrated support density - substrate protection factor - s residence time  相似文献   

13.
The effect of serum content of culture medium on the specific production rate of monoclonal antibodies (Mab's) and on shear sensitivity has been studied with hybridoma's, cultured in a continuous stirred tank reactor (CSTR). No decrease in specific Mab-production was found when the serum concentration was reduced from 10 to 2.5%, while steady state cell concentrations were hardly affected as well. In contrast the cell death rate in a bubble column strongly increased when the serum concentration was lowered, which could be ascribed to a reduced physical protective effect by the serum.List of Symbols k d s–1 death-rate constant - k g s–1 growth-rate constant - D m diameter of bubble column - d m diameter of air bubble - H m height of bubble column - X m3 hypothetical killing volume - X (m3/m3) specific hypothetical killing volume - F m3/s volumetric air-flow rate - C cells/m3 number of viable cells - C0 cells/m3 number of viable cells at t=0 - t s time  相似文献   

14.
In the field, photosynthesis of Acer saccharum seedlings was rarely light saturated, even though light saturation occurs at about 100 mol quanta m-2 s-1 photosynthetic photon flux density (PPFD). PPFD during more than 75% of the daylight period was 50 mol m-2 s-1 or less. At these low PPFD's there is a marked interaction of PPFD with the initial slope (CE) of the CO2 response. At PPFD-saturation CE was 0.018 mol m-2 s-1/(l/l). The apparent quantum efficiency (incident PPFD) at saturating CO2 was 0.05–0.08 mol/mol. and PPFD-saturated CO2 exchange was 6–8 mol m-2 s-1. The ratio of internal CO2 concentration to external (C i /C a ) was 0.7 to 0.8 except during sunflecks when it decreased to 0.5. The decrease in C i /C a during sunflecks was the result of the slow response of stomates to increased PPFD compared to the response of net photosynthesis. An empirical model, which included the above parameters was used to simulate the measured CO2 exchange rate for portions of two days. Parameter values for the model were determined in experiments separate from the daily time courses being sumulated. Analysis of the field data, partly through the use of simulations, indicate that the elimination of sunflecks would reduce net carbon gain by 5–10%.List of symbols A measured photosynthetic rate under any set of conditions (mol m-2 s-1) - A m (atm) measured photosynthetic rate at saturating PPFD, 350 l/l CO2 and 21% (v/v) O2 (mol m-2 s-1) - C constant in equation of Smith (1937, 1938) - C a CO2 concentration in the air (l/l) - C i CO2 concentration in the intercellular air space (l/l) - C i /* C i corrected for CO2 compensation point, i.e., C i -I *, (l/l) - CE initial slope of the CO2 response of photosynthesis (mol m-2 s-1/(l/l)) - CEM CE at PPFD saturation - E transpiration rate (mmol m-2 s-1) - F predicted photosynthetic rate (mol m-2 s-1) - G leaf conductance to H2O (mol m-2 s-1) - I photosynthetic photon flux density (mol m-2 s-1) - N number of data points - P m predicted photosynthetic rate at saturating CO2 and given PPFD (mol m-2 s-1) - P ml predicted photosynthetic rate at saturating CO2 and PPFD (mol m-2 s-1) - R d residual respiratory rate (mol m-2 s-1) - T a air temperature (°C) - T l leaf temperature (°C) - V reaction velocity in equation of Smith (1937, 1938) - V max saturated reaction velocity in equation of Smith (1937, 1938) - VPA vapor pressure of water in the air (mbar/bar) - VPD vapor pressure difference between leaf and air (mbar/bar) - X substrate concentration in equation of Smith (1937, 1938) - initial slope of the PPFD response of photosynthesis at saturating CO2 (mol CO2/mol quanta) - (atm) initial slope of the PPFD response of photosynthesis at 340 l/l CO2 and 21% (v/v) O2 (mol CO2/mol quanta) - I * CO2 compensation point after correction for residual respiration (l/l) - PPFD compensation point (mol m-2 s-1)  相似文献   

15.
Summary In this paper, an updated unstructured mathematical model for the penicillin G fed-batch fermentation is proposed, in order to correct some physical and biochemical shortcomings in the model of Heijnen et al. (1979,Biotechnol. Bioeng.,21, 2175–2201) and the model of Bajpai and Reuß (1980,J. Chem. Tech. Biotechnol.,30, 332–344). Its main features are the consistency for all values of the variables, and the ability to adequately describe different metabolic conditions of the mould. The model presented here can be considered as the translation of the latest advances in the biochemical knowledge of the penicillin biosynthesis.Nomenclature t time (h) - S amount of substrate in broth (g) - X amount of cell mass in broth (g) - P amount of product in broth (g) - V fermentor volume (L) - F input substrate feed rate (L/hr) - C s S/V substrate concentration in broth (g/L) - C x X/V cell mass concentration in broth (g/L) - C P P/V product concentration in broth (g/L) - s F substrate concentration in feed stream (g/L) - E m parameter related to the endogenous fraction of maintenance (g/L) - E p parameter related to the endogenous fraction of production (g/L) - K x Contois saturation constant for substrate limitation of biomass production (g/g DM) - K s Monod saturation constant for substrate limitation of biomss production (g/L) - K p saturation constant for substrate limitation of product formation (g/L) - K i substrate inhibition constant for product formation (g/L) - m s maintenance constant (g/g DM hr) - k h penicillin hydrolysis or degradation constant (hr–1) - Y x/s cell mass on substrate yield (g DM/g) - Y p/s product on substrate yield (g/g) - specific substrate consumption rate (g/g DM hr) - specific growth rate (hr–1) - substr specific substrate to biomass conversion rate (hr–1) - x maximum specific substrate to biomass conversion rate (hr–1) - specific production rate (g/g DM hr) - p specific production constant (g/g DM hr)  相似文献   

16.
The removal of dichloromethane from waste gases in a biological trickling filter was studied experimentally as well as theoretically within the concentration range of 0–10,000 ppm. A stable dichloromethane elimination performance was achieved during two years of operation, while the start-up of the system only amounted to several weeks at constant inlet concentrations. The trickling filter system was operated co-currently as well as counter-currently.However, experimental and theoretical results revealed that the relative flow direction of the mobile phases did not significantly affect the elimination performance. Moreover, it was found that the gas-liquid mass-transfer resistance in the trickling filter bed applied was negligible, which leaves the biological process inside the biofilm to be the rate limiting step.A simplified model was developed, the Uniform-Concentration-Model, which showed to predict the filter performance close to the numerical solutions of the model equations. This model gives an analytical expression for the degree of conversion and can thus be easily applied in practice.The dichloromethane eliminating performance of the trickling filter described in this paper, is reflected by a maximum dichloromethane elimination capacity EC max=157 g/(m3 · h) and a critical liquid concentration C lcr=45 g/m3 at a superficial liquid velocity of 3.6 m/h, inpendent of the gas velocity and temperature.List of Symbols a s m2/m3 specific area - a w m2/m3 specific wetted area - A m2 cross-sectional area - C g g/m3 gas phase concentration - C go g/m3 inlet gas phase concentration - C gocr g/m3 critical gas phase concentration - C g * Cg/Cgo dimensionless gas concentration - C l g/m3 liquid concentration - C lcr g/m3 critical liquid concentration - C lcr * mClcr/Cgo dimensionless critical concentration - c li g/m3 substrate concentration at liquid-biofilm interface - C l * mCl/Cgo dimensionless liquid concentration - C o g/m3 oxygen concentration inside the biofilm - C oi g/m3 oxygen concentration at liquid-biofilm interface - Cs g/m3 substrate concentration inside the biofilm - C si g/m3 substrate concentration at liquid-biofilm interface - D eff m2/h effective diffusion coefficient in the biofilm - D o m2/h effective diffusion coefficient for oxygen in the biolayer - E mug/ul extraction factor - E act kJ/mol activation energy for the biological reaction - EC g/(m3· h) K o a w : elimination capacity, or the amount of substrate degraded per unit of reactor volume and time - EC max g/(m3 · h) K o aw: maximum elimination capacity - f degree of conversion - h m coordinate in height - H m height of the packed bed - K 0 g/(m3 · h) maxXb/Y zeroth order reaction defined per unit of biofilm volume - k og m/h overall gas phase mass transfer coefficient - K * dimensionless constant given by Eq. (A.5) - K l * dimensionless constant given by Eq. (A.6) - K 2 * dimensionless constant given by Eq. (A.6) - m C g /Cl gas liquid distribution coefficient - N g/(m2 · h) liquid-biofilm interfacial flux of substrate - N og kogawH/ug number of gas phase transfer units - N r ko aw H/ug Cgo number of reaction units - OL g/(m3· h) u g C go /H organic load - r s g/(m3 ·h) zeroth order substrate degradation rate given by Eq. (1) - R s g/(g TSS ·h) specific activity - T K absolute temperature - u g m/h superficial gas velocity - u t m/h superficial liquid velocity - X b g TSS/m3 biomass concentration inside biofilm - X s g TSS/m3 liquid suspended biomass concentration - x m coordinate inside the biofilm - Y g TSS/(gDCM) yield coefficient Greek Symbols dimensionless parameter given by Eq. (2) - m averaged biofilm thickness - biofilm effectiveness factor given by Eqs. (7a)–(7c) - m penetration depth of substrate into the biofilm - max d–1 microbiological maximum growth rate - v o stoichiometric utilization coefficient for oxygen - v s stoichiometric utilization coefficient for substrate - dimensionless height in the filter bed - h H/u g superficial gas phase contact time - o (K 0 /DC ii )1/2 - o C o /C oi dimensionless oxygen concentration inside the biofilm - s C s /C si dimensionless substrate concentration inside the biofilm Experimental results, verifying the model presented will be discussed Part II (to be published in Vol. 6, No. 4)  相似文献   

17.
Emission of microorganisms from biofilters   总被引:2,自引:0,他引:2  
Experiments are reported on the discharge of microbial germs by biofilter systems used for the treatment of waste gases containing volatile organic compounds. The systems investigated concern six full-scale filter installations located in the Netherlands in several branches of industry, as well as a laboratory-scale installation used for modelling the discharge process. It is concluded that the number of microbial germs (mainly bacteria and to a much smaller extent moulds) in the outlet gas of the different full scale biofilters varies between 103 and 104 m–3, a number which is only slightly higher than the number encountered in open air and of the same order of magnitude encountered in indoor air. It is furthermore concluded that the concentration of microorganisms of a highly contaminated inlet gas is considerably reduced by the filtration process. On the basis of the experiments performed in the laboratory-scale filter bed, it is shown that the effect of the gas velocity on the discharge process results from two distinctive mechanisms: capture and emission. A theoretical model is presented describing the rate processes of both mechanisms. The model presented and the experimentally determined data agree rather well.List of Symbols a s m–1 specific area of the packing material - C m–3 microbial gas phase concentration - C e , C i m–3 microbial concentration in the exit and inlet gas resp. - CFU colony-forming-units - d c , d m m diameter of collecting and captured particle resp. - D m diameter of the filter bed - E single particle target efficiency - H m bed height - k c s–1 first order capture rate constant per unit of bedvolume - k e m–3 emission rate constant per unit of bedvolume - n number of observations - r c , r e m–3 s–1 capture and emission rate per unit of bed-volume - Re = Reynolds number - S t = Stokes number - u m s–1 superficial gas velocity - u m m s–1 superficial gas velocity at which C e = C i Greek Symbols void fraction of the filter bed - kg m–3 density of the gas phase - m kg m–3 density of captured particle - Pa s dynamic gas phase viscosity - = filter bed efficiency  相似文献   

18.
The paper presents the kinetic evaluations of poly(ethyleneimine)-penicillin acylase preparations. The comparative studies show that the investigated system is much better than the native enzyme, and slightly worse than commercially available Boenringer preparation. Additionally, the high stability of PEI-enzyme system, very easy way of its preparation, high flexibility, and possibility to set the needed enzyme concentration are particularly favourable for use of the membrane bioreactor with PEI-enzyme system immobilized in its volume. Some advantages of the use of such bioreactor are also discussed.List of Symbols C E IU/m3 activity concentration - C S mol/m3 substrate concentration - C P , CQ mol/m3 products concentration - K A mol/m3 constant which defines the affinity of a substrate to enzyme - K iS mol/m3 substrate inhibitory constant - K iP mol/m3 PhAA inhibitory constant - K iQ mol/m3 6-APA inhibitory constant - k 3 , mol/IU min constant rate of dissociation of the active complex - mol/m3 min rate of reaction This work was supported by Government Committee of Science: Grant KBN # 3 0321 92 01  相似文献   

19.
Summary A new, fast method is described to determine kLa either off-line, or on-line during animal-cell cultivation. Since it does not need the equilibrium concentration of oxygen in the liquid phase (C*), it is not required to await a new steady state. Furthermore, the results do not depend on the calibration value of the dissolved-oxygen probe. The method yielded accurate values for kLa, both for an oxygen-consuming and a non-consuming system.Nomenclature C L Dissolved-oxygen concentration [mol·m-3] - C * C L in equilibrium with the oxygen concentration in the gas phase [mol·m-3] - C L, Equilibrium oxygen concentration at stationary conditions [mol·m-3] - kLa Volumetric oxygen transfer coefficient [s-1] - r Specific oxygen consumption of biomass [mol·cell-1·s-1] - X Cell concentration [cells·m-3] - t Time [s] - Noise of dissolved-oxygen probe [mol·m-3] - Absolute error of kLa-measurement [s-1]  相似文献   

20.
Production of L-tryptophan from L-serine and indole catalyzed by Escherichia coli, immobilized in k-carrageenan gel beads, is technically feasible in the liquidimpelled loop reactor (LLR), using an organic solvent, e.g. n-dodecane.With L-serine in large excess intrinsic reaction kinetics is approximately first order with respect to indole, with a reaction constant of 8.5×10–5 m3 kg dw –1 s–1.The overall process kinetics is jointly controlled by intrinsic kinetics and by intraparticle mass transfer resistance, which can be quantified using an effectiveness factor.Mass transfer of indole from the organic to the aqueous phase and from the aqueous to the gel phase are relatively fast and thus have negligible influence in the overall process kinetics, under the operational conditions tested. However, they may become important if the process is intensified by increasing the cell concentration in the gel and/or the gel hold-up in the reactor.A simple model which includes indole mass balances over the aqueous and organic phases, mass transfer and reaction kinetics, with parameters experimentally determined in independent experiments, was successful in simulating L-tryptophan production in the LLR.List of Symbols a, b, c coefficients of the equilibrium curve for indole between organic and aqueous phases - A, B, C, D, E, F auxiliary variables used in liquid-liquid mass transfer studies - a x specific interfacial area referred to the volume of the aqueous phase (m–1) - A x interfacial area (m2) - a Y specific interfacial area referred to the volume of the organic phase (m–1) - A Y interfacial area (m2) - C b substrate concentration in the bulk of the aqueous phase (kg m–3) - C e substrate concentration in exit stream (kg m–3) - C E biocatalyst concentration referred to the aqueous phase (kg m–3) - C E s biocatalyst concentration referred to the volume of gel (kg m–3) - C s substrate concentration at the gel surface (kgm–3) - d, e, f coefficients of the equilibrium curve for indole between aqueous and organic phases - dp particle diameter (m) - K 2 kinetic constant (s–1) - K 1 kinetic constant K2/KM (kg–1 m3 s–1) - K M Michaälis-Menten constant (kgm–3) - K X mass transfer coefficient referred to the aqueous phase (ms–1) - K XaX volumetric mass transfer coefficient based on the volume of the aqueous phase (s–1) - k Y mass transfer coefficient referred to the organic phase (ms–1) - K YaY volumetric mass transfer coefficient based on the volume of the organic phase (s–1) - N X mass flux of indole from organic to aqueous Phase (kg m–2s–1) - N Y mass flux of indole from aqueous to organic phase (kg m–2s–1) - Q e volumetric flow rate in exit stream (m3s–1) - Q f volumetric flow rate in feed stream (m3s–1) - obs observed reaction rate (kg s–1 m–3) - intrinsic reaction rate (kg s–1 m–3) - Re Reynolds number - Sc Schmidt number - Sh Sherwood number - t time (s) - u superficial velocity (m s–1) - V max maximum reaction rate (kg s–1m–3) - V S volume of the support (m3) - V X volume of aqueous phase (m3) - V Y volume of the organic phase (m3) - X indole concentration in the aqueous phase (kgm–3) - Y indole concentration in the organic phase (kg m–3 Greek Letters overall effectiveness factor - e external effectiveness factor - i internal effectiveness factor - Thiele module A fellowship awarded to one of us (D.M.R.)by INICT is gratefuly acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号