首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Intact A431 cells were labeled with [gamma-32P]ATP. The major phosphorylation product of the ecto-kinase activity of A431 cells had the molecular mass of 170 kd and was identified as EGF receptor by specific immunoprecipitation. This phosphorylation was not stimulated by EGF added to the reaction buffer, but replacement of MgCl2 by MnCl2 in the buffer remarkably stimulated phosphorylation. An exogenous protein substrate, alpha-casein, was also phosphorylated by intact A431 cells. The analyses for phospho-amino acids of both EGF receptor and alpha-casein revealed that phosphorylation occurred mainly at phosphotyrosine residues. Tryptic phospho-peptides of the EGF receptor of intact A431 cells labeled with [gamma-32P]ATP were fractionated by HPLC. The elution patterns were essentially the same as that of the autophosphorylated EGF receptor, indicating that the phosphorylation sites of EGF receptor labeled in vivo with [gamma-32P]ATP are located in three tyrosine residues in the carboxyl terminus. These results indicate that the carboxyl-terminal tyrosine kinase domain of a small fraction of the EGF receptor molecules of an A431 cell is exposed on the outer surface of the cells.  相似文献   

2.
To determine whether phosphorylation of cell surface proteins is involved in NK cell activity, the phosphorylation patterns of a rat NK cell line (RNK-16) incubated with 12.5 microM [gamma-32P]ATP were characterized before and after exposure to YAC-1 cells, which serve as targets for killing, and K562 cells, which are not killed by RNK-16 cells. By 51Cr release assays, the inhibitory effect of ATP on RNK-16 killing activity previously reported was corroborated. RNK-16 cells prelabeled with 12.5 microM ATP show enhanced labeling of a 70- to 72,000-Da protein after exposure to unlabeled target YAC-1 cells but not after exposure to K562 cells. A protein of similar apparent molecular size is also labeled upon exposure of RNK-16 cells to OX-34, an antibody which binds and inhibits killing, as well as upon exposure to OX-18, which also binds but does not inhibit NK activity. These findings are indicative of the activation of a kinase with high affinity for [gamma-32P]ATP, which phosphorylates an endogenous surface substrate of 70-72,000 Da upon binding of macromolecules to the RNK-16 cells. RNK-16 cells, previously labeled with micromolars [gamma-32P]ATP and subsequently treated with millimolars unlabeled ATP, showed loss of label from a 110,000-Da protein component, indicative of the rapid turnover of a phosphate group on a surface protein. Thus, extracellular ATP enhances the phosphorylation of a 70- to 72,000-Da component upon binding of RNK-16 cells to target cells or upon binding of antibodies at micromolar concentrations of ATP and catalyzes the loss of phosphate from a 110,000-Da component at millimolar concentrations of ATP. These findings reflect a complex repertoire of surface phosphorylation changes which occur in RNK-16 cells.  相似文献   

3.
Highly purified sarcolemma from dog and pig cardiac muscle has been shown to contain significant activities of a membrane-bound cyclic AMP-dependent protein kinase. In addition, these membranes undergo endogenous phosphorylation when incubated with Mg2+ and [gamma-32P]ATP. By comparing 32P-labelled patterns obtained with [gamma-32P]ATP and the photoaffinity label 8-azidoadenosine 3':5'-[32P]monophosphate (8-azido-cyclic [32P]AMP), we have demonstrated that, whereas the major kinase isoenzyme in dog sarcolemma was Type II, that in the pig membrane was the Type I isoenzyme.  相似文献   

4.
Extracellular phosphorylation in the parasite, Leishmania major   总被引:2,自引:0,他引:2  
Intact promastigotes or cell-free extracts of the parasite Leishmania major were labelled with adenosine 5'[gamma-32P]-triphosphate (ATP). This resulted in the identification of eleven phosphoproteins. [gamma-32P]ATP incorporation into endogenous and exogenous substrates was insensitive to most of the commonly used protein kinase inhibitors and activators indicating that the leishmanial enzyme(s) may represent a new class of kinase(s). In addition, exogenous substrate specificity was inconsistent with the preferences of second messenger-dependent protein kinases. Cyclic AMP had differential effects on phosphorylation in intact cells and lysates. The majority of kinase activity could be attributed to an externally oriented membrane-associated protein kinase(s), as no specific cytosolic phosphoproteins were found and intact cells phosphorylated exogenous substrates. Labelled ATP did not cross the membrane and [alpha-32P]ATP was an unsuitable substrate for the phosphorylation activity. The ectokinase activity on live Leishmania exhibited a different substrate preference when compared to the protein kinase activity in the particulate fraction, suggesting that more than one protein kinase may be present in L. major. Three serine-labelled phosphoproteins were specifically released into the medium. The presence of an ecto-kinase and these released phosphoproteins may play a significant role in host-parasite interactions.  相似文献   

5.
Middle T antigen of polyoma virus is associated principally with the plasma membrane. Comparison of the trypsin sensitivity of middle T in intact cells and "inside out" membrane preparations showed that middle T is oriented towards the inside of the cell. This was confirmed by labeling of middle T in permeabilized cells, but not in intact cells, using [gamma-32P]ATP. Middle T molecules active in the in vitro kinase reaction could be differentiated from the bulk (metabolically labeled) middle T based on resistance to trypsin treatment. The active fraction also behaved differently from the bulk when cell frameworks were prepared with Triton-containing buffers; whereas the bulk middle T was evenly distributed in the soluble and cell framework fractions, the kinase-active forms were largely associated with the framework. Middle T molecules labeled in vivo with 32PO4 were found largely in the framework fraction, like the molecules that show kinase activity in vitro. Experiments with ATP affinity reagents 8-azido-ATP and 2,3-dialdehyde ATP have failed to label the middle T antigen. However, 2,3-dialdehyde ATP could be used to inhibit the kinase reaction. This raises the question of whether middle T antigen possesses intrinsic kinase activity or, rather, associates with a cellular tyrosine kinase.  相似文献   

6.
Pyridoxal [32P] phosphate was prepared using [gamma-32P] ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

7.
An ectoprotein kinase activity has been identified on intact rabbit peritoneal polymorphonuclear leucocytes and the time course of phosphate incorporation into proteins has been followed at different ATP levels. Saturation is reached at around 3 mM ATP and the activity is inhibited by p-chloromercuribenzoate. The possibility that the observed protein phosphorylation arises through the action of a membrane ATPase liberating phosphate for transfer into the cell, incorporation into ATP and its utilisation by endogenous kinases, has been excluded by studying both enzymes concomitantly and measuring the rate of [32P]orthophosphate uptake. Lactate dehydrogenase measurements in the extracellular media also exclude the possibility of kinase liberation from lysed cells. Moreover, the pattern of 32P-labelling of polypeptides when intact cells are exposed to [32P]ATP is quite different from that when homogenates are incubated with [32P]ATP or intact cells with [32P]-orthophosphate. We have been unable to demonstrate any cAMP dependency for this ectokinase activity.  相似文献   

8.
Intact rat fat cells exposed to 12.5 microM [gamma-32P]ATP incorporate label into specific proteins within minutes. By solubilizing the reaction mixture with SDS which by passes the subcellular fractionation steps, the labeled proteins can be identified in autoradiographs of SDS-PAGE gels. The most prominently labeled protein has an Mr of 42,000. Localization of this component to the cell surface can be made on the basis of inhibition of phosphorylation by addition of a protein derived from the rat brain with protein kinase inhibitory property, susceptibility of the phosphorylated protein to tryptic digestion, whereas the unphosphorylated protein is unaffected by digestion with trypsin (15 min), inhibition of phosphorylation of this protein after brief exposure to melittin, and the consistent observation that more label is associated with the 42,000 Mr band in homogenates and permeabilized cells than in comparable numbers of intact cells exposed to the same amount of label. A 42,000 Mr phosphoprotein is also present in mitochondria which is most likely the alpha subunit of pyruvate dehydrogenase. To rule out the possibility that the cell surface protein might be a mitochondrial contaminant from broken cells, 32Pi-labeled and [gamma-32P]ATP-labeled cells were solubilized with Triton and chromatographed on a rabbit anti-pyruvate dehydrogenase antibody-Sepharose 4B column. A single labeled peak was detected upon elution of the bound fraction only in the 32Pi-labeled sample, and not in the [gamma-32P]ATP-labeled sample. Subcellular fractionation studies of intact cells labeled with [gamma-32P]ATP showed differences in the recovery of phosphoproteins of 42,000 Mr depending on whether a continuous sucrose gradient (27.6-54.1%, g/ml) or a discontinuous sucrose gradient (16, 35 and 48%, g/ml) was used. Phosphoproteins of 42,000 Mr were located in the mitochondrial and membrane fractions collected by discontinuous sucrose gradient separation, whereas a phosphoprotein of 42,000 Mr was found primarily in the mitochondrial fraction after continuous sucrose gradient separation. By 5'-nucleotidase activity measurements, the latter approach appears to result in the isolation of a heavy fragment of the plasma membrane with the mitochondrial light fraction which is 42,000 in Mr and labeled. Finally, comparison of the autoradiographs of two-dimensional (2D) gels (isoelectric focusing followed by 10% SDS-PAGE) show different isoelectric points for 42,000 Mr components in [gamma-32P]ATP- and 32Pi-labeled cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Cycle-purified microtubule protein from mammalian brain incorporated [32P]Pi upon incubation with [gamma-32P]GTP under the conditions used to promote assembly. This phosphorylation also occurred in the same proteins when phosphorylated with [gamma-32P]ATP and was only slightly stimulated by cAMP. GTP was a much less effective substrate than ATP. The transfer of phosphoryl groups from [gamma-32P]GTP to endogenous proteins followed a linear time-course and was stimulated by low concentrations of ATP and, more efficiently, by ADP. These data are in agreement with the predictions derived from a mechanism of phosphorylation by which [gamma-32P]GTP does not act as a phosphoryl donor for the protein kinase activity but, instead, only as a repository of high group transfer potential phosphoryl groups used to make [gamma-32P]ATP, from contaminating ADP, by means of the nucleoside diphosphate kinase activity. Using 100 mM fluoride, which suppressed protein phosphorylation without inhibiting the nucleoside diphosphate kinase activity, formation of [gamma-32P]ATP was detected. Fluoride was also able to protect microtubules from a slow depolymerization which was found to occur during long-term incubation of microtubules. This indicates that the phosphorylation observed in the presence of GTP is sufficient to destabilize microtubules.  相似文献   

10.
Nucleotides are important extracellular signaling molecules. At least five mammalian P2Y receptors exist that are specifically activated by ATP, UTP, ADP, or UDP. Although the existence of ectoenzymes that metabolize extracellular nucleotides is well established, the relative flux of ATP and UTP through their extracellular metabolic products remains undefined. Therefore, we have studied the kinetics of accumulation and metabolism of endogenous ATP in the extracellular medium of four different cell lines. ATP concentrations reached a maximum immediately after change of medium and decreased thereafter with a single exponential decay (t(1/2);1 approximately;230-40 min). ATP levels did not fall to zero but attained a base-line concentration that was independent of the medium volume and of the initial ATP concentration. Although the base-line concentration of ATP remained stable for up to 12 h, [gamma-(32)P]ATP added to resting cells as a radiotracer was completely degraded within 120 min, indicating that steady state reflected a basal rate of ATP release balanced by ATP hydrolysis (20-200 fmol x min(-)(1) x cell(-)(6)). High performance liquid chromatography analysis revealed that the gamma-phosphate of ATP was rapidly, although transiently, transferred during steady state to species subsequently identified as UTP and GTP, indicating the existence of both ecto-nucleoside diphosphokinase activity and the accumulation of endogenous UDP and GDP. Conversely, addition of [gamma-(32)P]UTP to resting cells resulted in transient formation of [gamma-(32)P]ATP, indicating phosphorylation of endogenous ADP by nucleoside diphosphokinase. The final (32)P-products of [gamma-(32)P]ATP metabolism were [(32)P]orthophosphoric acid and a (32)P-labeled species that was further purified and identified as [(32)P]inorganic pyrophosphate. In C6 cells, the formation of [(32)P]pyrophosphate from [gamma-(32)P]ATP at steady state exceeded by 3-fold that of [(32)P]orthophosphate. These results illustrate for the first time a constitutive release of ATP and other nucleotides and reveal the existence of a complex extracellular metabolic pathway for released nucleotides. In addition to the existence of an ecto-ATPase activity, our results suggest a major scavenger role of ecto-ATP pyrophosphatase and a transphosphorylating activity of nucleoside diphosphokinase.  相似文献   

11.
12.
Dark-adapted pure bovine rod outer segments (ROS) (A280/A500--2.1) can be phosphorylated in the presence of [gamma-32P]ATP and [gamma-32P]GTP. The constant levels of phosphorylation, reached within 10--15 min, are 100 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP and 2--4 pmol 32P/nmol of rhodopsin for [gamma-32P]GTP. These processes are not controlled by 10(-4)--10(-8) cAMP, cGMP or Ca2+, but are inhibited at higher concentrations of these agents. In the presence of histone the constant level of phosphorylation is increased up to 200 +/- 30 pmol 32P/nmol of rhodopsin for [gamma-32P]ATP, but is not changed when [gamma-32P]GTP is used. 10(-5) M cAMP is found to activate the phosphorylation in the presence of histone and [gamma-32P]ATP by 5--6 times. All this evidences that ROS contains cAMP-dependent protein kinase, which utilizes ATP, but not GTP. Moreover, ROS contains cyclic nucleotides- and Ca2+-independent protein kinase. These protein kinases are the ROS endogenous enzymes. This is shown in experiments on separation of pure ROS in a sucrose density gradient.  相似文献   

13.
In an in vitro incubation, 8-azidoguanosine 5'-[gamma-32P]triphosphate ( [gamma-32P]-8-azido-GTP) labeled bleached rhodopsin independent of ultraviolet light. Characterization of this labeling indicated that rhodopsin was phosphorylated with [gamma-32P]-8-azido-GTP as a phosphate donor. At low concentrations, ATP increased this labeling activity 5-fold. In the same incubation, [gamma-32P]-8-azido-GTP also labeled G alpha (Mr 40 000). This labeling was ultraviolet light dependent. G beta (Mr 35 000) was also labeled dependent for the most part upon ultraviolet light, but a smaller component of labeling appeared to result from phosphorylation. Differential labeling of G alpha and G beta was found to vary intricately with experimental conditions, especially prebleaching of rhodopsin, tonicity of the medium, and the presence or absence of 2-mercaptoethanol. Affinity labeling of G alpha and G beta by [gamma-32P]-8-azido-GTP in competition with ATP or GTP was kinetically complex, consistent with possible multiple binding sites for GTP on both subunits. Independent evidence for two or more binding sites on G alpha has been offered by other laboratories, and recently, at least one binding site on G beta and its analogues among the N proteins of adenylate cyclases has been identified.  相似文献   

14.
Calcium- and phospholipid-dependent protein kinase C activity and substrates were characterized in cell lysates of preneoplastic JB6 cells, a model system of genetic variants for sensitivity to tumor promoter-induced neoplastic transformation. Protein kinase C activity was similar for sensitive and resistant variants, as measured by calcium- and phospholipid-dependent phosphorylation of an exogenous substrate (histone HIII). Of 13 endogenous protein kinase C substrates, identified by labeling proteins with [gamma-32P] ATP, at least two (80 and 23 kDa) are potential candidates for mediating events on the pathway for promotion of transformation. 32P incorporation into the 80-kDa protein kinase C substrate was stimulated by tetradecanoylphorbol acetate and correlated with phenotype: the highest incorporation was found in promotion-insensitive cells, an intermediate level in promotion-sensitive cells and the lowest in the transformed cells. The phosphorylation of an 80-kDa protein, found by labeling intact cells in monolayer growth with [32P]orthophosphate, was also stimulated by tetradecanoylphorbol acetate and correlated inversely with phenotype. The 80 kDa protein kinase C substrate from cell lysates and the 80-kDa phosphoprotein from intact cells appear to be identical, as indicated by peptide mapping with protease V8 from Staphylococcus aureus. This finding suggests that the 80-kDa substrate is relevant to promoter-induced signal transduction in the intact cell. The 23-kDa protein kinase C substrate exhibited a band shift in sodium dodecyl sulfate gels in response to another transformation promoter in JB6 cells, the calcium analog, lanthanum (Smith, B. M., Gindhart, T. D., and Colburn, N. H. (1986) Carcinogenesis 7, 1949-1956). In summary, there are no unique substrates that distinguish the variants. Quantitative differences in certain substrates or their phosphorylation may, however, account for the difference in promotion sensitivity among the variants.  相似文献   

15.
Protein phosphorylation was investigated in the bacterium Acinetobacter calcoaceticus both in vivo and in vitro. In cells grown with [32P]orthophosphate, several radioactive phosphoproteins were detected by gel electrophoresis and autoradiography. These proteins were shown to contain phosphoserine, phosphothreonine, and a relatively large proportion of phosphotyrosine residues. Incubation of cellular extracts with [gamma-32P] ATP also resulted in the phosphorylation of several proteins. At least four of them, namely an 81-kDa protein, were modified at tyrosine. No protein labeling occurred when extracts were incubated with [gamma-32P] ATP or [14C]ATP. Moreover, phosphoproteins were insensitive to snake venom phosphodiesterase. All together these results indicate that A. calcoaceticus harbors different protein kinases including a protein-tyrosine kinase activity. Further analysis of this activity showed that it has little, if any, functional similarity with eukaryotic protein-tyrosine kinases.  相似文献   

16.
We have characterized a novel ecto-protein kinase activity and a novel ecto-protein phosphatase activity on the membrane surface of human platelets. Washed intact platelets, when incubated with [gamma-32P]ATP in Tyrode's buffer, showed the phosphorylation of a membrane surface protein migrating with an apparent molecular mass of 42 kDa on 5-15% SDS polyacrylamide gradient gels. The 42 kDa protein could be further resolved on 15% SDS gels into two proteins of 39 kDa and 42 kDa. In this gel system, it was found that the 39 kDa protein became rapidly phosphorylated and dephosphorylated, whereas the 42 kDa protein was phosphorylated and dephosphorylated at a much slower rate. NaF inhibited the dephosphorylation of these proteins indicating the involvement of an ecto-protein phosphatase. The platelet membrane ecto-protein kinase responsible for the phosphorylation of both of these proteins was identified as a serine kinase and showed dependency on divalent cations Mg2+ or Mn2+ ions. Ca2+ ions potentiated the Mg(2+)-dependent ecto-protein kinase activity. The ecto-protein kinase rapidly phosphorylated histone and casein added exogenously to the extracellular medium of intact platelets. Following activation of platelets by alpha-thrombin, the incorporation of [32P]phosphate from exogenously added [gamma-32P]ATP by endogenous protein substrates was reduced by 90%, suggesting a role of the ecto-protein kinase system in the regulation of platelet function. The results presented here demonstrate that both protein kinase and protein phosphatase activities reside on the membrane surface of human platelets. These activities are capable of rapidly phosphorylating and dephosphorylating specific surface platelet membrane proteins which may play important roles in early events of platelet activation and secretion.  相似文献   

17.
Intact ejaculated bovine sperm incorporate 32Pi into ADP to a specific activity two to three times higher than into ATP. This contrasts with other cell types where ATP specific activity is higher than that of ADP. Predominant labeling of ADP may be partially due to compartmentation of ATP, but removal of cytosolic ATP does not change the relative labeling of ADP and ATP. Dilution of extracellular 32Pi following labeling resulted in loss of 70% of label from ADP but only 50% loss from gamma-ATP at 26 min. ADP was labeled in the absence of detectable ATP in the presence of rotenone plus antimycin. Fractionation of ejaculated sperm yielded midpieces that are depleted of adenylate kinase and have coupled respiration. ATP was labeled with 32Pi, but ADP was not in midpieces. Evidence for mitochondrial substrate level phosphorylation-supported incorporation of 32Pi into nucleotides was observed for intact sperm incubated with pyruvate and inhibitors of oxidative phosphorylation, but this activity did not occur in midpieces and does not appear to explain disproportionate labeling of ADP. We conclude that labeling of ADP in intact and permeabilized cells occurs by two pathways; one involves adenylate kinase, and the other is an unknown pathway which may be independent of ATP.  相似文献   

18.
The in vitro phosphorylation of actin from rat cerebral cortex   总被引:5,自引:0,他引:5  
Actin was phosphorylated by a cyclic AMP-stimulated protein kinase in a lysed synaptosomal fraction incubated with [gamma-32P]ATP, while calcium had no effect on endogenous labeling of the protein. Incubation of an intact synaptosomal fraction with 32P-inorganic phosphate did not lead to any detectable phosphorylation of actin in the presence or absence of dibutyryl-cyclic AMP, or chemical depolarization. It is suggested that actin is not phosphorylated in the physiologically relevant intact synaptosomes but gains access to protein kinases on lysis.  相似文献   

19.
Phosphorylation of proteins in Clostridium thermohydrosulfuricum.   总被引:4,自引:3,他引:1       下载免费PDF全文
Cell extracts of the thermophile Clostridium thermohydrosulfuricum catalyzed the phosphorylation by [gamma-32P]ATP of several endogenous proteins with Mrs between 13,000 and 100,000. Serine and tyrosine were the main acceptors. Distinct substrate proteins were found in the soluble (e.g., proteins p66, p63, and p53 of Mrs 66,000, 63,000, and 53,000, respectively) and particulate (p76 and p30) fractions, both of which contained protein kinase and phosphatase activity. The soluble fraction suppressed the phosphorylation of particulate proteins and contained a protein kinase inhibitor. Phosphorylation of p53 was promoted by 10 microM fructose 1,6-bisphosphate or glucose 1,6-bisphosphate and suppressed by hexose monophosphates, whereas p30 and p13 were suppressed by 5 microM brain (but not spinach) calmodulin. Polyamines, including the "odd" polyamines characteristic of thermophiles, modulated the labeling of most of the phosphoproteins. Apart from p66, all the proteins labeled in vitro were also rapidly labeled in intact cells by 32Pi. Several proteins strongly labeled in vivo were labeled slowly or not at all in vitro.  相似文献   

20.
A nuclear system for studying nuclear protein phosphorylation is characterized, using as phosphate donor either low levels of [gamma-32P]GTP, low levels of [gamma-32P]ATP, or low levels of labeled ATP plus excess unlabeled GTP. Since nuclear casein kinase II is the only described nuclear protein kinase to use GTP with high affinity, low levels of GTP should specifically assay this enzyme. ATP should measure all kinases, and ATP plus unlabeled GTP should measure all kinases except nuclear casein kinase II (ATP-specific kinases). The results are consistent with these predictions. In contrast with the ATP-specific activity, endogenous phosphorylation with GTP was enhanced by 100 mM NaCl, inhibited by heparin and quercetin, stimulated by polyamines, and did not use exogenous histone as substrate. The GTP- and ATP-specific kinases phosphorylated different subsets of about 20 endogenous polypeptides each. Addition of purified casein kinase II enhanced the GTP-supported phosphorylation of the identical proteins that were phosphorylated by endogenous kinase. These results support the hypothesis that activity measured with GTP is catalyzed by nuclear casein kinase II, though other minor kinases which can use GTP are not ruled out. Preliminary observations with this system suggest that the major nuclear kinases exist in an inhibited state in nuclei, and that the effects of polyamines on nuclear casein kinase II activity are substrate specific. This nuclear system is used to determine if the C-proteins of hnRNP particles, previously shown to be substrates for nuclear casein kinase II in isolated particles, is phosphorylated by GTP in intact nuclei. The results demonstrate that the C-proteins are effectively phosphorylated by GTP, but in addition they are phosphorylated by ATP-specific kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号