首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Two rat liver fatty acid synthetase preparations, containing 1.6 and 2.0 mol of 4'-phosphopantetheine/mol of synthetase, showed specific activity of 2006 and 2140 nmol of NADPH oxidized/min per mg of protein respectively. The two synthetase preparations could be loaded with either 3.3-4.4 mol of [1-14] acetate or 2.9-3.7 mol of [2-14C]malonate, by incubation with either [1-14C] acetyl-CoA or [2-14C]malonyl-CoA. The 4'-phosphopantetheine site could be more than 90% saturated and the serine site about 80% saturated with malonate derived from malonyl-CoA. However, with acetyl-CoA as substrate, binding at both the 4'-phosphopantetheine and cysteine thiol sites did not reach saturation. We interpret these results to indicate that, whereas the equilibrium constant for transfer of substrates between the serine loading site and the 4'-phosphopantetheine site is close to unity, that for transfer of acetyl moieties between the 4'-phosphopantetheine and cysteine sites favours formation of the 4'-phosphopantetheine thioester. Thus, despite the apparent sub-stoichiometric binding of acetate, the results are consistent with a functionally symmetrical model for the fatty acid synthetase which permits simultaneous substrate binding at two separate active centres.  相似文献   

4.
Pigeon liver fatty acid synthetase proteins (apo- and holo-forms) have been synthesized in a cell-free system reconstituted from polysomes and a soluble enzyme fraction. Identification of the cell-free synthesized products as fatty acid synthetase was achieved by affinity chromatography, by immuno-precipitation and by the simultaneous conversion of both the authentic carrier protein and the in vitro synthesized products from the holo- to the apo-form of the synthetase. The reverse conversion was also effected.  相似文献   

5.
6.
7.
Fatty acid synthetase complex (Mr = 500,000) purified from pigeon liver homogenates is inactivated by phenylmethylsulfonyl fluoride. A well characterized inhibitor of serine esterases. Pseudounimolecular kinetics are followed at all inhibitor concentrations studied (0.05 to 1.0 mM). The second order rate constant obtained at pH 7.0, 30 degrees in 0.05 M potassium phosphate, 1 mM EDTA is 250 plus or minus 10 M-1 min-1 and appears to be independent of pH between 6 and 7.9. The inactivation of the enzyme complex appears to be selective since only one of the several component enzymes of fatty acid synthesis, palmityl-CoA deacylase, is inhibited. Acetyl- and malonyl-CoA-pantetheine transacylase activities as well as the kinetics of the reduction and dehydration steps are nearly identical for the native and the modified enzymes. The rate of approach of the condensation-CO2 exchange reaction (substrates: hexanoyl-CoA, malonyl-CoA, CoA, and H14CO3-) is slightly slower in the modified enzyme, though this change is not large enough to account for total loss of activity for fatty acid synthesis. The rate of loss of palmityl-CoA deacylase activity at a constant inhibitor concentration follows biphasic kinetics. Complete inactivation is achieved only after 2 mol of the inhibitor are bound per mol of the enzyme complex. Acetyl-, butyryl-, and hexanoyl-CoA thioesters (at 1.0 mM concentrations) protect the enzyme complex against inactivation by phenylmethylsulfonyl fluoride whereas CoA has no effect. Malonyl-CoA on the other hand, promotes inhibitor-mediated inactivation. Of the N-acetyl cysteamine derivatives tested, S-acetyl-N-acetyl cysteamine (at 10 mM) gives almost complete protection against inactivation whereas S-acetoacetyl-, S-beta-hydroxybutyryl-, and S-crotonyl-N-acetyl cysteamine thioesters exhibit either slight or no protection. These data demonstrate that phenylmethylsulfonyl fluoride is a selective reagent for the inactivation of functional fatty acyl deacylase component(s) of the pigeon liver fatty acid synthetase complex, and that it has no effect on malonyl or acetyl transacylases. The data are also in accord with the postulation that the inhibitor interacts at two catalytic centers of the enzyme complex. Furthermore, the patterns of protective effects shown by saturated acyl-CoA asters and malonyl-CoA point to different mechanisms of deacylation for these esters.  相似文献   

8.
9.
10.
11.
12.
Pigeon liver fatty acid synthetase (FAS) was inactivated irreversibly by stoichiometric concentration of o-phthalaldehyde exhibiting a bimolecular kinetic process. FAS-o-phthalaldehyde adduct gave a characteristic absorption maxima at 337 nm. Moreover this derivative showed fluorescence emission maxima at 412 nm when excited at 337 nm. These results were consistent with isoindole ring formation in which the -SH group of cysteine and epsilon-NH2 group of lysine participate in the reaction. The inactivation is caused by the reaction of the phosphopantetheine -SH group since it is protected by either acetyl- or malonyl-CoA. The enzyme incubated with iodoacetamide followed by o-phthalaldehyde showed no change in fluorescence intensity but decrease in intensity was found in the treatment of 2,4,6-trinitrobenzenesulphonic acid (TNBS), a lysine specific reagent with the enzyme prior to o-phthalaldehyde addition. As o-phthalaldehyde did not inhibit enoyl-CoA reductase activity, so nonessential lysine is involved in the o-phthalaldehyde reaction. Double inhibition experiments showed that 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a thiol specific reagent, binds to the same cysteine which is also involved in the o-phthalaldehyde reaction. Stoichiometric results indicated that 2 moles of o-phthalaldehyde were incorporated per mole of enzyme molecule upon complete inactivation.  相似文献   

13.
Pigeon liver fatty acid synthetase has been found to catalyze the formation of palmitic acid from malonyl-CoA and NADPH in the absence of acetyl-CoA. Radio-chemical and spectral assays show that the activity of the complex in the absence of acetyl-CoA is about 25–30% of the activity in the presence of this compound. Initial velocities were determined for a series of reactions in which the malonyl-CoA concentration was varied over a range of 5–200 μm at a fixed NADPH concentration of 100μm and vice versa. No inhibitory effects of one substrate over the other were found. However, when the synthesis of fatty acids was studied in the presence of acetyl-CoA, a significant inhibitory effect of malonyl-CoA was observed. It has also been shown that the fatty acid synthetase synthesizes triacetic lactone from malonyl-CoA in the absence of NADPH and acetyl-CoA. No evidence was obtained for the direct decarboxylation of malonyl-CoA to acetyl-CoA in this reaction. Hence it is proposed that decarboxylation of the malonyl moiety bound covalently to 4′-phosphopantetheine occurs to yield acetyl-4′-phosphopantetheine. Further, it is proposed that the acetyl moiety of the latter compound is transferred to the cysteine site of the enzyme complex and that fatty acid synthesis proceeds in the presence of NADPH as proposed by Phillips et al. [Arch. Biochem. Biophys.138, 380 (1970)]. In the absence of NADPH triacetic lactone is formed.  相似文献   

14.
The synthesis of the multienzyme complex rat liver fatty acid synthetase was investigated utilizing modifications of methods developed in the laboratory of Schimke (Schimke, R. T. (1964) J. Biol. Chem. 239, 3808-3817 and Arias, I. M., Doyle, D., and Schimke, R. T. (1969) J. Biol. Chem. 244, 3303-3315). The relative amounts of radioactivity from a pulse of labeled lysine appearing in polypeptides derived from purified synthetase complex can be measured compensating for the varying amounts of lysine per polypeptide chain. The results show that labeled amino acid is incorporated into polypeptides derived from the complex at heterogeneous rates. However, 10 to 15 hours after the administration of a pulse, the amount of label per lysine residue in these polypeptides is identical. The results support the previously proposed model of this multienzyme complex (Tweto, J., Dehlinger, P., and Larrabee, A. R. (1972) Biochem. Biophys. Res. Commun. 48, 1371-1377). The previous work and that reported here suggests the existence of a pool of synthetase subunits which is an obligatory intermediate in both synthesis and turnover of the complex. The results obtained in this work are consistent with this model if the exchange of subunits into the intact complex is a relatively slow process requiring several hours to reach equilibrium.  相似文献   

15.
Fatty acid synthetase was covalently labelled with [14C]palmitic acid from [14C]palmityl-CoA. Tryptic and peptic digestion of the [14C]palmityl enzyme resulted in the formation of radioactive palmityl peptides carrying the long-chain acyl residue both in oxygen-ester and thio-ester linkage. The lipophilic palmityl peptides were purified by column and thin-layer chromatography using organic lolvent systems. Peptides arising from the acyl carrier protein, the condensing enzyme and the palmityl transferase were identified and characterized. The amino acid sequence of a 4'-phosphopant-etheine-containing peptide was established. It comprises 13 residues and shows a high degree of homology with the acyl carrier protein from Escherichia coli. A heptapeptide and an octapeptide from the palmityl transferase active site were partially sequenced. The identical amino acid composition of palmityl transferase and malonyl transferase core peptides is briefly discussed.  相似文献   

16.
The effects of the substrates acetyl-CoA, malonyl-CoA, and NADPH on the activity of pigeon liver fatty acid synthetase have been studied over a wide range of concentrations. Double-reciprocal coordinate plots for each of the substrates have been found to be linear at low concentrations. At higher concentrations two of the substrates, acetyl-CoA and malonyl-CoA, inhibit the rate of fatty acid synthesis. This double substrate inhibition is apparently of a competitive type. Inhibition by acetyl-CoA is very strong as compared to that by malonyl-CoA. At a 4:1 ratio of acetyl- to malonyl-CoA, inhibition is about 75%, whereas at a 4:1 ratio of malonyl- to acetyl-CoA fatty acid synthesis proceeds at the maximum rate.These results are consistent with the hypothesis that a competition between acetyl-CoA and malonyl-CoA occurs for the occupany of the 4′- phosphopantetheine site, a prosthetic group of the synthetase complex, and possibly also for the hydroxyl binding site (or sites). The relative concentrations of these substrates and the binding constants for each then determine whether these sites are occupied by acetyl or malonyl groups, and whether inhibition of fatty acid synthesis occurs. Based on our results, assays for pigeon liver fatty acid synthetase activity should be conducted at substrate concentrations of 15 μm, 60 μm, and 100 μm for acetyl-CoA, malonyl-CoA, and NADPH, respectively.  相似文献   

17.
The separation of the half-molecular weight, nonidentical subunits (I and II) of the pigeon liver fatty acid synthetase complex has been achieved on a large (20 mg) scale by affinity chromatography on Sepharose epsilon-aminocaproyl pantetheine. This separation requires a careful control of temperature, ionic strength, pH, and column flow rate for success. The yield of subunit II is further improved by transacetylation (with acetyl-CoA) of the dissociated fatty acid synthetase prior to affinity chromatography. The separated subunit I (reductase) contains the 4'-phosphopantetheine (A2) acyl binding site, two NADPH binding sites, and beta-ketoacyl and crotonyl thioester reductases. Subunit II (transacylase) contains the B1 (hydroxyl or loading) and B2 (cysteine) acyl binding sites, and acetyl- and malonyl-CoA: pantetheine transacylases. When subunit I is mixed in equimolar quantities with subunit II, an additional NADPH binding site is found even though subunit II alone shows no NADPH binding. Both subunits contain activities for the partial reactions, beta-hydroxybutyryl thioester dehydrase (crotonase) and palmityl-CoA deacylase. Subunit I has 8 sulfhydryl groups per mol whereas subunit II has 60. Reconstitution of fatty acid synthetase activity to 75% of the control level is achieved on reassociation of subunits I and II.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号