首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats were injected with 1 μg of alpha-melanocyte stimulating hormone (α-MSH) into the third ventricle and locally in the ventral tegmental area and in different regions of the substantia nigra. The modifications produced on grooming behavior and locomotion as well as on the dopamine content of the nucleus accumbens and the caudate putamen, were studied. Both intraventricular peptide administration and microinjections into the ventral tegmental area induced excessive grooming and a significant increase of the locomotor activity. The dopamine content of the nucleus accumbens and caudate putamen was markedly reduced. Injections of the peptide into the substantia nigra pars compacta failed to induce excessive grooming but did provoke a slight increase in locomotor activity and a smaller change in caudate dopamine content than that observed by injections in the ventral tegmental area or in the third ventricle. Dopamine levels in the nucleus accumbens were not changed. Finally, the injections of α-MSH into the lateral substantia nigra did not produce either biochemical or behavioral changes.The results suggests that α-MSH can modify, directly or indirectly, the striatal dopaminergic activity and that the behavioral alterations observed such as excessive grooming, could be mediated by the activation of the dopamine cells from the ventral tegmental area, that in turn may provoke a significative release of dopamine at the caudate putamen nucleus as well as in nucleus accumbens.  相似文献   

2.
《Journal of Physiology》1998,92(3-4):225-228
The distributed neural networks involved in the intravenous self-administration of nicotine and cocaine, and in a model of relapse of nicotine-taking after abstinence, were compared in Wistar rats. Post-mortem brain maps of c-fos-related antigens expression showed specific activation in prefrontal cortex, anterior cingulate and nucleus accumbens for both drugs, but of the anterior cingulate cortex only during relapse, suggesting that a subset of the neural network involved in drug self-administration is activated during relapse.  相似文献   

3.
A possible role for G proteins in contributing to the chronic actions of cocaine was investigated in three rat brain regions known to exhibit electrophysiological responses to chronic cocaine: the ventral tegmental area, nucleus accumbens, and locus coeruleus. It was found that chronic, but not acute, treatment of rats with cocaine produced a small (approximately 15%), but statistically significant, decrease in levels of pertussis toxin-mediated ADP-ribosylation of Gi alpha and Go alpha in each of these three brain regions. The decreased ADP-ribosylation levels of the G protein subunits were shown to be associated with 20-30% decreases in levels of their immunoreactivity. In contrast, chronic cocaine had no effect on levels of G protein ADP-ribosylation or immunoreactivity in other brain regions studied for comparison. Chronic cocaine also had no effect on levels of Gs alpha or G beta immunoreactivity in the ventral tegmental area and nucleus accumbens. Specific decreases in Gi alpha and Go alpha levels observed in response to chronic cocaine in the ventral tegmental area, nucleus accumbens, and locus coeruleus are consistent with the known electrophysiological actions of chronic cocaine on these neurons, raising the possibility that regulation of G proteins represents part of the biochemical changes that underlie chronic cocaine action in these brain regions.  相似文献   

4.
食物成瘾是指人们对某些特定食物(高度加工、可口、高热量的食物)的依赖性达到难以控制的程度,并表现出一系列成瘾样的行为学变化,具有强迫性、长期性和反复性的特点。食物成瘾可引起肥胖症,而且是大部分人不能维持减肥效果或坚持限制性饮食以保持健康体重的核心因素。深入理解食物成瘾及其神经生物学机制,将为干预食物成瘾以改善肥胖提供准确的靶点。食物成瘾的诊断标准是耶鲁大学食物成瘾量表,而食物成瘾的动物模型为小鼠食物自我管理模型。外侧下丘脑-腹侧被盖区-伏隔核神经环路、腹侧被盖区-前边缘皮质-伏隔核神经环路和外侧隔核-结节核神经环路是调控食物成瘾的关键神经环路机制。  相似文献   

5.
Abstract: This study was aimed at identifying the neuronal pathways that mediate the eating-induced increase in the release of dopamine in the nucleus accumbens of the rat brain. For that purpose, a microdialysis probe was implanted in the ventral tegmental area and a second probe was placed in the ipsilateral nucleus accumbens. Receptor-specific compounds acting on GABAA (40 µ M muscimol; 50 µ M bicuculline), GABAB (50 µ M baclofen), acetylcholine (50 µ M carbachol), NMDA [30 µ M (±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP)], and non-NMDA [300 µ M 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] receptors were infused into the ventral tegmental area by retrograde dialysis, whereas extracellular dopamine was recorded in the ipsilateral nucleus accumbens. Intrategmental infusion of muscimol or baclofen decreased extracellular dopamine in the ipsilateral nucleus accumbens; CPP and CNQX were without effect, and bicuculline and carbachol increased dopamine release. During infusion of the various compounds, food-deprived rats were allowed to eat for 10 min. The infusions of muscimol, bicuculline, baclofen, carbachol, and CNQX did not prevent the eating-induced increase in extracellular dopamine in the nucleus accumbens. However, during intrategmental infusion of CPP, the eating-induced increase in extracellular dopamine in the nucleus accumbens was suppressed. These results indicate that a glutamatergic projection to the ventral tegmental area mediates, via an NMDA receptor, the eating-induced increase in dopamine release from mesolimbic dopamine neurons.  相似文献   

6.
Abstract— The localization of cholinergic, GABAergic and aminergic structures in the 'mesolimbic' system has been discussed from studies on the topographical distribution of choline acetyltransferase, glutamate decarboxylase and aromatic amino acid decarboxylase in normal rat brain and in brains hemitransected at the level of globus pallidus. The structures analysed included nucleus accumbens, olfactory tubercle, septum, medial forebrain bundle, striatum, substantia nigra, ventral tegmental area and nucleus interpeduncularis.
Choline acetyltranferase was highly concentrated in the nucleus interpeduncularis, but it did also exhibit considerable activity in the nucleus accumbens, the olfactory tubercle and the striatum. The activities did not change after hemitransection. Aromatic amino acid decarboxylase was highly concentrated in the ventral tegmental area, but high activities were also found in the striatum, the nucleus accumbens, the olfactory tubercle and the pars compacta of the substantia nigra. The activity decreased in all areas rostral to the hemitransection. Glutamate decarboxylase was highly concentrated in the dopamine innervated regions, moreso in the limbic structures than in the striatum. Much higher activity was found in the substantia nigra than in the ventral tegmental area. After hemitransection the activity in the substantia nigra was decreased whereas in the ventral tegmental area it was unchanged. Our results thus suggest that dopaminergic cells in the ventral tegmental area do not receive GABAergic fibres from the terminal regions of the ascending dopaminergic fibres. In addition, we found a very high concentration of glutamate decarboxylase in a region traversed by the rostral medial forebrain bundle. Here the activity was mainly confined to the paniculate fraction, probably the synaptosomes. This fraction also displayed a very active high affinity uptake of y-aminobutyric acid.  相似文献   

7.
Nicotine or cocaine, when administered intravenously, induces an increase of extracellular dopamine in the nucleus accumbens. The nicotine-mediated increase was shown to occur at least in part through increase of the activity of dopamine neurons in the ventral tegmental area. As part of our continuing studies of the mechanisms of nicotine effects in the brain, in particular, effects on reward and cognitive mechanisms, in the present study we examined the role of various receptors in the ventral tegmental area in nicotine and cocaine reward. We assayed inhibition of the increase of dopamine in the nucleus accumbens induced by intravenous nicotine or cocaine administration by antagonists administered into the ventral tegmental area. Nicotine-induced increase of accumbal dopamine release was inhibited by intrategmental nicotinic (mecamylamine), muscarinic (atropine), dopaminergic (D1: SCH 23390, D2: eticlopride), and NMDA glutamatergic (MK 801) and GABAB (saclofen) antagonists, but not by AMPA-kainate (CNQX, GYKI-52466) antagonists under our experimental circumstances. The intravenous cocaine-induced increase of dopamine in the nucleus accumbens was inhibited by muscarinic (atropine), dopamine 2 (eticlopride), and GABAB (saclofen) antagonists but not by antagonists to nicotinic (mecamylamine), dopamine D1 (SCH 23390), glutamate (MK 801), or AMPA-kainate (CNQX, GYKI-52466) receptors. Antagonists administered in the ventral tegmental area in the present study had somewhat different effects when they were previously administered intravenously. When administered intravenously atropine did not inhibit cocaine effects. The inhibition by atropine may be indirect, since this compound, when administered intrategmentally, decreased basal dopamine levels in the accumbens. The findings indicate that a number of receptors in the ventral tegmental area mediate nicotine-induced dopamine changes in the nucleus accumbens, a major component of the nicotine reward mechanism. Some, but not all, of these receptors in the ventral tegmental area also seem to participate in the reward mechanism of cocaine. The importance of local receptors in the ventral tegmental area was further indicated by the increase in accumbal dopamine levels after intrategmental administration of nicotine or also cocaine.  相似文献   

8.
Abstract: Recent work indicates an important role for excitatory amino acids in behavioral sensitization to amphetamine. We therefore examined, using in vivo microdialysis in awake rats, the effects of amphetamine on efflux of glutamate, aspartate, and serine in the ventral tegmental area and nucleus accumbens, brain regions important for the initiation and expression of amphetamine sensitization, respectively. Water-pretreated and amphetamine-pretreated rats were compared to determine if sensitization altered such effects. In both brain regions, Ca2+-dependent efflux of glutamate accounted for ∼20% of basal glutamate efflux. A challenge injection of water or 2.5 mg/kg of amphetamine did not significantly alter glutamate, aspartate, or serine efflux in the ventral tegmental area or nucleus accumbens of water- or amphetamine-pretreated rats. However, 5 mg/kg of amphetamine produced a gradual increase in glutamate efflux in both regions that did not reverse, was observed in both water- and amphetamine-pretreated rats, and was prevented by haloperidol. Although increased glutamate efflux occurred with too great a delay to mediate acute behavioral responses to amphetamine, it is possible that repeated augmentation of glutamate efflux during repeated amphetamine administration results in compensatory changes in levels of excitatory amino acid receptors in the ventral tegmental area and nucleus accumbens that contribute to development or expression of amphetamine sensitization.  相似文献   

9.
Orphanin FQ has been reported to suppress extracellular dopamine levels in the nucleus accumbens after intracerebroventricular administration. This study sought to provide evidence for an intra-ventral tegmental site of action for this effect using a dual-probe microdialysis experimental design. Orphanin FQ was applied to the ventral tegmental area of anesthetized rats by reverse dialysis while extracellular dopamine was sampled with a second dialysis probe in the nucleus accumbens. Orphanin FQ at a probe concentration of 1 mM (but not at 0.1 mM) significantly reduced nucleus accumbens dialysate dopamine levels. The receptor-inactive analogue, des-Phe1-orphanin FQ (1 mM), produced a small but significant increase in nucleus accumbens dialysate dopamine levels. Simultaneous measurement of ventral tegmental area dialysate amino acid content revealed significant increases in both GABA and glutamate during infusion of orphanin FQ (1 mM). To determine if increased GABA overflow mediates the action of orphanin FQ on mesolimbic neurons, orphanin FQ (10 nmol) was microinjected directly into the ventral tegmental area in the presence or absence of the GABA(A) receptor antagonist, bicuculline (1 nmol). Bicuculline transiently blocked the suppressive action of orphanin FQ on accumbens dialysate dopamine levels. These data indicate that orphanin FQ decreases dopamine transmission in the nucleus accumbens by inhibiting dopamine neuronal activity in the ventral tegmental area through a mechanism that may involve an increased overflow of GABA.  相似文献   

10.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Chronic cocaine use in humans and animal models is known to lead to pronounced alterations in glutamatergic function in brain regions associated with reinforcement. Previous studies have examined ionotropic glutamate receptor (iGluR) subunit protein level changes following acute and chronic experimenter-administered cocaine or after withdrawal periods from experimenter-administered cocaine. To evaluate whether alterations in expression of iGluRs are associated with cocaine reinforcement, protein levels were assessed after binge (8 h/day, 15 days; 24-h access, days 16-21) cocaine self-administration and following 2 weeks of abstinence from this binge. Western blotting was used to compare levels of iGluR protein expression (NR1-3B, GluR1-7, KA2) in the ventral tegmental area (VTA), substantia nigra (SN), nucleus accumbens (NAc), striatum and prefrontal cortex (PFC) of rats. iGluR subunits were altered in a time-dependent manner in all brain regions studied; however, selective alterations in certain iGluR subtypes appeared to be associated with binge cocaine self-administration and withdrawal in a region-specific manner. In the SN and VTA, alterations in iGluR protein levels compared with controls occurred only following binge access, whereas in the striatum and PFC, iGluR alterations occurred with binge access and following withdrawal. In the NAc, GluR2/3 levels were increased following withdrawal compared with binge access, and were the only changes observed in this region. Because subunit composition determines the functional properties of iGluRs, the observed changes may indicate alterations in the excitability of dopamine transmission underlying long-term biochemical and behavioral effects of cocaine.  相似文献   

12.
Feeding elicited by the mu-selective agonist, [D-Ala2, M-Phe4, Gly-ol5]-encephalin administered into the nucleus accumbens is blocked by accumbal pre-treatment with mu, delta1, delta2 and kappa, but not mu1 opioid antagonists. Correspondingly, mu-agonist-induced feeding elicited from the ventral tegmental area is blocked by ventral tegmental area pre-treatment with mu and kappa, but not delta opioid antagonists. A bi-directional opioid-opioid feeding interaction has been firmly established such that mu-agonist-induced feeding elicited from the ventral tegmental area is blocked by accumbal naltrexone, and that accumbal mu-agonist-induced feeding is blocked by naltrexone pre-treatment in the ventral tegmental area. To determine which opioid receptor subtypes mediate the regional bi-directional opioid-opioid feeding interactions between these two sites, the present study examined the dose-dependent ability of either general (naltrexone), mu (beta-funaltrexamine), kappa (nor-binaltorphamine) or delta (naltrindole) opioid antagonists administered into one site to block mu-agonist-induced feeding elicited from the other site. General, mu and kappa, but not delta opioid receptor antagonist pre-treatment in the ventral tegmental area dose-dependently reduced mu-agonist-induced feeding elicited from the nucleus accumbens. General, mu and delta, and to a lesser degree kappa, opioid receptor antagonist pre-treatment in the nucleus accumbens dose-dependently reduced mu-agonist-induced feeding elicited from the ventral tegmental area. Thus, multiple, but different opioid receptor subtypes are involved in mediating opioid-opioid feeding interactions between the nucleus accumbens and ventral tegmental area regions.  相似文献   

13.
Previous studies had implicated the involvement of the ventral tegmental area and its dopamine projections to the nucleus accumbens in goal-directed behavior. This study investigated whether or not the GABAergic inputs to the ventral tegmental area and, in turn, dopaminergic input to the nucleus accumbens from the ventral tegmental area modify drinking and cardiovascular responses elicited by central administration of angiotensin II. Injections of 25 ng of angiotensin II into a lateral cerebral ventricle of the rat elicited water intakes averaging 7-8 mL in 15 min with latencies usually less than 3 min. Pretreatment of the nucleus accumbens with spiperone, a dopamine antagonist, or the ventral tegmental area with gamma-amino butyric acid (GABA) produced dose-dependent reductions in water intake and number of laps taken while increasing the latency to drink. The spiperone injection did not alter the pressor response. On the other hand, the GABA injections attenuated the pressor responses to central angiotensin II administration. These findings suggest that GABA input to the ventral tegmental area modifies both the cardiovascular and drinking responses elicited following central administration of angiotensin II. However, the dopamine projections to the nucleus accumbens appear to be involved only in the drinking responses elicited by central injections of angiotensin II. Divergence for the coordination of the skeletal motor behavioral component and the cardiovascular component elicited by central administration of angiotensin II must occur before the involvement of these dopamine pathways.  相似文献   

14.
Dopamine (DA) and cholecystokinin octapeptide carboxy-terminal (CCK-8) have been found to coexist in some mesolimbic neurons. The present investigation was undertaken in order to study the biochemical and behavioral interactions between CCK-8 and some central monoaminergic pathways. The action of the sulfated form of CCK-8 (10 micrograms/10 microliter intracerebroventricularly) on DA turnover in nucleus accumbens, olfactory tubercles and corpus striatum of the rat was determined after DA synthesis inhibition with alpha-methyl-p-tyrosine (250 mg/kg i.p.). Also, CCK-8 action (1-30 micrograms intracisternally) on DA synthesis was assessed by measuring accumulation of dihydroxyphenylalanine (DOPA) after DOPA-decarboxylase inhibition with NSD-1015 (m-hydroxybenzylhydrazine, 100 mg/kg i.p.). The contents of DA and its main metabolites, dihydroxyphenylacetic acid and homovanillic acid, together with serotonin and its main metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were measured in different brain areas after direct injection of CCK-8 into the ventral tegmental area (A10) or nucleus accumbens. Further, the effect of CCK-8 on amphetamine-induced locomotion and apomorphine-induced stereotypies was studied along with changes in spontaneous locomotion and rearing after CCK-8 injection into the ventral tegmental area and nucleus accumbens. No consistent statistically significant effects of CCK-8 on biochemical or behavioral assessments on measures of DA function were observed. However, injection of high doses of CCK-8 into the ventral tegmental area significantly decreased levels of 5-HIAA in the nucleus accumbens, olfactory tubercles and striatum.  相似文献   

15.
16.
17.
Findings from our laboratory and others have demonstrated that the hormone insulin has chronic effects within the CNS to regulate energy homeostasis and to decrease brain reward function. In this study, we compared the acute action of insulin to decrease intake of a palatable food in two different behavioral tasks-progressive ratios sucrose self-administration and micro opioid-stimulated sucrose feeding-when administered into several insulin-receptive sites of the CNS. We tested insulin efficacy within the medial hypothalamic arcuate (ARC) and paraventricular (PVN) nuclei, the nucleus accumbens, and the ventral tegmental area. Administration of insulin at a dose that has no chronic effect on body weight (5 mU) into the ARC significantly suppressed sucrose self-administration (75+/-5% of paired control). However, although the mu opioid DAMGO, [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin acetate salt, stimulated sucrose intake at all four CNS sites, the ventral tegmental area was the only sensitive site for a direct effect of insulin to antagonize acute (60 min) micro opioid-stimulated sucrose feeding: sucrose intake was 53+/-8% of DAMGO-induced feeding, when insulin was coadministered with DAMGO. These findings demonstrate that free feeding of sucrose, and motivated work for sucrose, can be modulated within unique sites of the CNS reward circuitry. Further, they support the interpretation that adiposity signals, such as insulin, can decrease different aspects of ingestion of a palatable food, such as sucrose, in an anatomically specific manner.  相似文献   

18.
Corticotropin releasing factor (CRF), one of the major effectors of stress, plays a major role in the natural course of drug addiction by accelerating the acquisition of psychostimulant self-administration and increasing incentive motivation for the drug itself and for drug-associated stimuli. Stress-induced CRF is also considered a predictor of relapse and is responsible for feelings of anxiety and distress during cocaine withdrawal. Despite this knowledge, the role of CRF has not been explored in the context of recent research on reward-related learning, built on the hypothesis that neuroplastic changes in the mesocorticolimbic circuitry underlie addiction. The present review explores the effects of stress on the pattern of interaction between CRF, dopamine and glutamate in distinct structures of the mesocorticolimbic circuitry, including the ventral tegmental area (VTA), amygdala, bed nucleus of stria terminalis (BNST) and the prefrontal cortex (PFC), after acute and chronic cocaine consumption as well as in early withdrawal and protracted abstinence. A better knowledge of the neurochemical and cellular mechanisms involved in these interactions would be useful to elucidate the role of CRF in cocaine-induced neuronal plasticity, which could be useful in developing new pharmacological strategies for the treatment of cocaine addiction.  相似文献   

19.
Drugs that are addictive in humans have a number of commonalities in animal model systems-(1). they enhance electrical brain-stimulation reward in the core meso-accumbens reward circuitry of the brain, a circuit encompassing that portion of the medial forebrain bundle (MFB) which links the ventral tegmental area (VTA) of the mesencephalic midbrain with the nucleus accumbens (Acb) of the ventral limbic forebrain; (2). they enhance neural firing of a core dopamine (DA) component of this meso-accumbens reward circuit; (3). they enhance DA tone in this reward-relevant meso-accumbens DA circuit, with resultant enhancement of extracellular Acb DA; (4). they produce conditioned place preference (CPP), a behavioral model of incentive motivation; (5). they are self-administered; and (6). they trigger reinstatement of drug-seeking behavior in animals behaviorally extinguished from intravenous drug self-administration behavior and, perforce, pharmacologically detoxified from their self-administered drug. Cannabinoids were long considered 'anomalous', in that they were believed to not interact with these brain reward processes or support drug-seeking and drug-taking behavior in these animal model systems. However, it is now clear-from the published data of several research groups over the last 15 years-that this view of cannabinoid action on brain reward processes and reward-related behaviors is untenable. This paper reviews those data, and concludes that cannabinoids act on brain reward processes and reward-related behaviors in strikingly similar fashion to other addictive drugs.  相似文献   

20.
The dopamine (DA) pathway mediates numerous neuronal functions which are implicated in psychiatric disorders. Previously, our lab investigated the status of the dopamine transporter in the Wistar-Kyoto rat, a purported rodent model of depressive behavior, and reported significant alterations in transporter binding sites in several brain regions when compared to control rat strains. Given that DA-2 and DA-3 receptors belong to the same class of DA receptors, are co-localized in the mesolimbic and nigrostriatal regions of the brain and function as autoreceptors, this study mapped the distribution of central DA-2 and DA-3 receptors in Wistar-Kyoto and Wistar rats. The results indicated that while the binding of 125I-sulpride to DA-2 receptors was higher in the nucleus accumbens (shell) and ventral tegmental area, it was lower in the nucleus accumbens (core), caudate putamen and hypothalamus in Wistar-Kyoto compared to Wistar rats. In contrast, the binding of 125I-sulpride to DA-3 receptors was higher in the caudate putamen, nucleus accumbens (shell and core) and islands of Calleja in Wistar-Kyoto compared to Wistar rats. Given that DA-2 like receptors in the ventral tegmental area function as autoreceptors, it is possible that the greater inhibitory effects exerted by DA-2 and DA-3 receptors in Wistar-Kyoto rats may lead to a net deficit in DA levels in areas receiving projection from this cell body area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号