首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
嗜碱芽孢杆菌(Bacillus halodurans)C-125菌株的基因组中,一个编码木糖苷酶的基因(BH1068)被克隆并在大肠杆菌中获得高效表达。通过全面分析纯化蛋白,确证了它的木糖苷酶功能。该酶在pH4~9的范围内保持稳定,最适pH值为中性,有较宽的最适温度(35°C~45°C),且能在45°C范围内保持稳定。这些特性使得该酶可在较为宽广的条件下对木聚糖进行酶促降解。该酶对人工合成底物对硝基苯-β-木糖苷(p-nitrophenyl-β-xylose,pNPX)的比活力为174mU/mg蛋白质,且木糖对其反馈抑制较弱(抑制常数Ki为300mmol/L)。结果显示该酶是活性较高且较耐木糖抑制的细菌源木糖苷酶。该酶与商品化的木聚糖酶一起水解山毛举木聚糖(Beechwood xylan)时显示了增效作用,且水解率可获40%。该酶最适pH为中性,对木糖耐受等特性与大多数来源于真菌、最适pH为酸性、对木糖敏感的木糖苷酶将有较好的互补。结果表明该酶在木聚糖或含木聚糖多糖的单糖化过程可能发挥重要作用。  相似文献   

2.
To identify genes encoding extracytosolic proteins, a minitransposon, TnSig, containing a signal-less beta-lactamase ('bla) as reporter gene, was constructed and used for in vitro transposition of genomic libraries made in Escherichia coli. The 'bla gene was cloned into a bacteriophage Mu minitransposon enabling translational fusions between 'bla and target genes. Fusion of TnSig in the correct reading frame to a protein carrying transmembrane domains or signal peptides resulted in ampicillin resistance of the corresponding clone. Prokaryotic gene libraries from the alkaliphilic bacterium Bacillus halodurans C125 and the hyperthermophilic archaeon Sulfolobus solfataricus P2 were tagged with TnSig. The genomic sequences, which are publicly available (EMBL and EMBL ), were used for rapid open reading frame (ORF) identification and prediction of protein localisation in the cell. Genes for secreted proteins, transmembrane proteins and lipoproteins were successfully identified by this method. In contrast to previous transposon based identification strategies, the method described here is fast and versatile and essentially enables any selectable marker compatible library to be tagged. It is suited for identifying genes encoding extracytosolic proteins in gene libraries of a wide range of prokaryotic organisms.  相似文献   

3.
Thermostable alkaline pectate lyases have potential applications in the textile industry as an alternative to chemical-based ramie degumming processes. In particular, the alkaline pectate lyase from Bacillus sp. strain N16-5 (BspPelA) has potential for enzymatic ramie degumming because of its high specific activity under extremely alkaline conditions without the requirement for additional Ca2+. However, BspPelA displays poor thermostability and is inactive after incubation at 50°C for only 30 min. Here, directed evolution was used to improve the thermostability of BspPelA for efficient and stable degumming. After two rounds of error-prone PCR and screening of >12,000 mutants, 10 mutants with improved thermostability were obtained. Sequence analysis and site-directed mutagenesis revealed that single E124I, T178A, and S271G substitutions were responsible for improving thermostability. Structural and molecular dynamic simulation analysis indicated that the formation of a hydrophobic cluster and new H-bond networks was the key factor contributing to the improvement in thermostability with these three substitutions. The most thermostable combined mutant, EAET, exhibited a 140-fold increase in the t50 (time at which the enzyme loses 50% of its initial activity) value at 50°C, accompanied by an 84.3% decrease in activity compared with that of wild-type BspPelA, while the most advantageous combined mutant, EA, exhibited a 24-fold increase in the t50 value at 50°C, with a 23.3% increase in activity. Ramie degumming with the EA mutant was more efficient than that with wild-type BspPelA. Collectively, our results suggest that the EA mutant, exhibiting remarkable improvements in thermostability and activity, has the potential for applications in ramie degumming in the textile industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号