首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and floral meristem determinacy. In the flower of mfo1 mutants, the identities of palea and lodicule are disturbed, and mosaic organs were observed. Furthermore, the determinacy of the floral meristem was lost, and extra carpels or spikelets developed in mfo1 florets. The expression patterns of floral MADS box genes were disturbed in the mutant florets. Suppression of another rice AGL6-like gene, MADS17, caused no morphological abnormalities in the wild-type background, but it enhanced the phenotype in the mfo1 background, indicating that MADS17 has a minor but redundant function with that of MFO1. Whereas single mutants in either MFO1 or the SEPALLATA-like gene LHS1 showed moderate phenotypes, the mfo1 lhs1 double mutant showed a severe phenotype, including the loss of spikelet meristem determinacy. We propose that rice AGL6-like genes help to control floral organ identity and the establishment and determinacy of the floral meristem redundantly with LHS1.  相似文献   

7.
8.
9.
10.
There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKCC type and MIKC* type. In seed plants, the MIKCC type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.  相似文献   

11.
12.

Background and Aims

The family of MADS box genes is involved in a number of processes besides controlling floral development. In addition to supplying homeotic functions defined by the ABC model, they influence flowering time and transformation of vegetative meristem into inflorescence meristem, and have functions in roots and leaves. Three Gerbera hybrida At-SOC1-like genes (Gh-SOC1–Gh-SOC3) were identified among gerbera expressed sequence tags.

Methods

Evolutionary relationships between SOC1-like genes from gerbera and other plants were studied by phylogenetic analysis. The function of the gerbera gene Gh-SOC1 in gerbera floral development was studied using expression analysis, protein–protein interaction assays and reverse genetics. Transgenic gerbera lines over-expressing or downregulated for Gh-SOC1 were obtained using Agrobacterium transformation and investigated for their floral phenotype.

Key Results

Phylogenetic analysis revealed that the closest paralogues of At-SOC1 are Gh-SOC2 and Gh-SOC3. Gh-SOC1 is a more distantly related paralogue, grouping together with a number of other At-SOC1 paralogues from arabidopsis and other plant species. Gh-SOC1 is inflorescence abundant and no expression was seen in vegetative parts of the plant. Ectopic expression of Gh-SOC1 did not promote flowering, but disturbed the development of floral organs. The epidermal cells of ray flower petals appeared shorter and their shape was altered. The colour of ray flower petals differed from that of the wild-type petals by being darker red on the adaxial side and greenish on the abaxial surface. Several protein–protein interactions with other gerbera MADS domain proteins were identified.

Conclusions

The At-SOC1 paralogue in gerbera shows a floral abundant expression pattern. A late petal expression might indicate a role in the final stages of flower development. Over-expression of Gh-SOC1 led to partial loss of floral identity, but did not affect flowering time. Lines where Gh-SOC1 was downregulated did not show a phenotype. Several gerbera MADS domain proteins interacted with Gh-SOC1.  相似文献   

13.
开花是植物由营养生长向生殖生长转变的重要过程,许多开花相关基因参与这一过程,AGAMOUS like 6(AGL6)亚家族是其中的重要一类,AGL6亚家族基因编码MIKC-type MADS box转录因子,含有MADS-box保守结构域,通过多条途径参与花时的调节及花器官发育。该文对AGL6及其同源基因的结构、功能、进化以及与其它相关基因之间的调控关系进行综述,并对该基因研究中存在的一些问题及今后的研究方向进行了讨论。  相似文献   

14.
15.
Five genes with homology to the floral homeotic genes deficiens of Antirrhinum and agamous of Arabidopsis were isolated from tomato. Each of the five genes is unique in the genome and could be localized to a different chromosome by RFLP mapping. Four of the tomato genes (hereafter TM) are flower-specific with distinguishable temporal expression. TM4 and TM8 are 'early', while TM5 and TM6 are 'late' genes. TM4 is homologous to squamous and TM6 is similar to deficiens, which are, respectively, 'early' and 'late' bona fide homeotic genes in Antirrhinum. The proteins encoded by the five tomato genes, like several known homeotic genes from other plants, contain within their N-terminus a highly conserved DNA-binding domain, the MADS box. All known plant MADS box genes also share, however, other properties. They all contain a central, moderately conserved, and rather basic domain, and a highly divergent or even missing C-terminal domain. Furthermore, molecular modelling predicts the presence of a conserved amphipatic alpha helix, at a constant distance from the MADS box in each of these proteins. The common properties of eight MADS box proteins from three plant families indicate that all their domains were coded for by the same ancestor gene. The sequence homology between pairs of MADS genes from different species indicates that the MADS ancestor gene multiplied and diverged in an ancestor plant common to several dicotyledon families.  相似文献   

16.
17.
DORMANCY ASSOCIATED MADS-BOX (DAM) genes are related to AGAMOUS-LIKE 24 and SHORT VEGETATIVE PHASE genes of arabidopsis and are differentially regulated coordinately with endodormancy induction and release in buds of several perennial plant species. DAM genes were first shown to directly impact endodormancy in peach where a deletion of a series of DAM resulted in loss of endodormancy induction. We have cloned and characterized several MADS box genes from the model perennial weed leafy spurge. Leafy spurge DAM genes are preferentially expressed in shoot tips and buds in response to cold temperatures and day length in a manner that is relative to the level of endodormancy induced by various environmental conditions. Over-expression of one DAM gene in arabidopsis delays flowering. Additionally, we show that at least one DAM gene is differentially regulated by chromatin remodeling. Comparisons of the DAM gene promoters between poplar and leafy spurge have identified several conserved sequences that may be important for their expression patterns in response to dormancy-inducing stimuli.  相似文献   

18.
19.
20.
Jeon JS  Jang S  Lee S  Nam J  Kim C  Lee SH  Chung YY  Kim SR  Lee YH  Cho YG  An G 《The Plant cell》2000,12(6):871-885
Rice contains several MADS box genes. It has been demonstrated previously that one of these genes, OsMADS1 (for Oryza sativa MADS box gene1), is expressed preferentially in flowers and causes early flowering when ectopically expressed in tobacco plants. In this study, we demonstrated that ectopic expression of OsMADS1 in rice also results in early flowering. To further investigate the role of OsMADS1 during rice flower development, we generated transgenic rice plants expressing altered OsMADS1 genes that contain missense mutations in the MADS domain. There was no visible alteration in the transgenic plants during the vegetative stage. However, transgenic panicles typically exhibited phenotypic alterations, including spikelets consisting of elongated leafy paleae and lemmas that exhibit a feature of open hull, two pairs of leafy palea-like and lemma-like lodicules, a decrease in stamen number, and an increase in the number of carpels. In addition, some spikelets generated an additional floret from the same rachilla. These characteristics are very similar to those of leafy hull sterile1 (lhs1). The map position of OsMADS1 is closely linked to that of lhs1 on chromosome 3. Examination of lhs1 revealed that it contains two missense mutations in the OsMADS1 MADS domain. A genetic complementation experiment showed that the 11.9-kb genomic DNA fragment containing the wild-type OsMADS1 gene rescued the mutant phenotypes. In addition, ectopic expression of the OsMADS1 gene isolated from the lhs1 line resulted in lhs1-conferred phenotypes. These lines of evidence demonstrate that OsMADS1 is the lhs1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号