首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local Ca2+ transients such as puffs and sparks form the building blocks of cellular Ca2+ signaling in numerous cell types. They have traditionally been studied by linescan confocal microscopy, but advances in TIRF microscopy together with improved electron-multiplied CCD (EMCCD) cameras now enable rapid (>500 frames s−1) imaging of subcellular Ca2+ signals with high spatial resolution in two dimensions. This approach yields vastly more information (ca. 1 Gb min−1) than linescan imaging, rendering visual identification and analysis of local events imaged both laborious and subject to user bias. Here we describe a routine to rapidly automate identification and analysis of local Ca2+ events. This features an intuitive graphical user-interfaces and runs under Matlab and the open-source Python software. The underlying algorithm features spatial and temporal noise filtering to reliably detect even small events in the presence of noisy and fluctuating baselines; localizes sites of Ca2+ release with sub-pixel resolution; facilitates user review and editing of data; and outputs time-sequences of fluorescence ratio signals for identified event sites along with Excel-compatible tables listing amplitudes and kinetics of events.  相似文献   

2.
3.
《Cell calcium》2007,41(5-6):413-422
The Ca2+ microdomains generated around the mouth of open ion channels represent the basic building blocks from which cytosolic Ca2+ signals are constructed. Recent improvements in optical imaging techniques now allow these microdomains to be visualized as single channel calcium fluorescence transients (SCCaFTs), providing information about channel properties that was previously accessible only by electrophysiological patch-clamp recordings. We review recent advances in single channel Ca2+ imaging methodologies, with emphasis on total internal reflection fluorescence microscopy (TIRFM) as the technique of choice for recording SCCaFTs from voltage- and ligand-gated plasmalemmal ion channels. This technique of ‘optical patch-clamp recording’ is massively parallel, permitting simultaneous imaging of hundreds of channels; provides millisecond resolution of gating kinetics together with sub-micron spatial resolution of channel locations; and is applicable to diverse families of membrane channels that display partial permeability to Ca2+ ions.  相似文献   

4.
The subcellular localization of membrane Ca2+ channels is crucial for their functioning, but is difficult to study because channels may be distributed more closely than the resolution of conventional microscopy is able to detect. We describe a technique, stochastic channel Ca2+ nanoscale resolution (SCCaNR), employing Ca2+-sensitive fluorescent dyes to localize stochastic openings and closings of single Ca2+-permeable channels within <50 nm, and apply it to examine the clustered arrangement of inositol trisphosphate receptor (IP3R) channels underlying local Ca2+ puffs. Fluorescence signals (blips) arising from single functional IP3Rs are almost immotile (diffusion coefficient <0.003 μm2 s−1), as are puff sites over prolonged periods, suggesting that the architecture of this signaling system is stable and not subject to rapid, dynamic rearrangement. However, rapid stepwise changes in centroid position of fluorescence are evident within the durations of individual puffs. These apparent movements likely result from asynchronous gating of IP3Rs distributed within clusters that have an overall diameter of ∼400 nm, indicating that the nanoscale architecture of IP3R clusters is important in shaping local Ca2+ signals. We anticipate that SCCaNR will complement superresolution techniques such as PALM and STORM for studies of Ca2+ channels as it obviates the need for photoswitchable labels and provides functional as well as spatial information.  相似文献   

5.
Cellular Ca2+ signals are often constrained to cytosolic micro- or nano-domains where stochastic openings of Ca2+ channels cause large fluctuations in local Ca2+ concentration (Ca2+ ‘noise’). With the advent of TIRF microscopy to image the fluorescence of Ca2+-sensitive probes from attoliter volumes it has become possible to directly monitor these signals, which closely track the gating of plasmalemmal and ER Ca2+-permeable channels. Nevertheless, it is likely that many physiologically important Ca2+ signals are too small to resolve as discrete events in fluorescence recordings. By analogy with noise analysis of electrophysiological data, we explore here the use of statistical approaches to detect and analyze such Ca2+ noise in images obtained using Ca2+-sensitive indicator dyes. We describe two techniques - power spectrum analysis and spatio-temporal correlation - and demonstrate that both effectively identify discrete, spatially localized calcium release events (Ca2+ puffs). Moreover, we show they are able to detect localized noise fluctuations in a case where discrete events cannot directly be resolved.  相似文献   

6.
In this study, we have developed a mathematical method to derive the Ca2+ fluxes underlying agonist-evoked Ca2+ waves in cultured rat cortical astrocytes. Astrocytes were stimulated with norepinephrine (100 nM) to evoke Ca2+ waves, which were recorded by measuring FIuo-3 fluorescence changes with high spatial and temporal resolution. Normalized fluorescence (ΔF/F) was analyzed in discrete cellular spaces in a series of successive slices along the length of the cell. From these data, Ca2+ flux was then calculated using a one dimensional reaction-diffusion equation which utilizes the temporal and spatial derivatives of the fluorescence data and the diffusion coefficient of Ca2+ in the cytosol. This method identified distinct sites of positive flux (Ca2+ release into the cytosol) and of negative flux (Ca2+ removal from cytosol) and showed that in astrocytes, sites of Ca2+ release from stores regularly alternate with sites of Ca2+ removal from the cytosol. Cross correlation analysis of the two distribution patterns gave positive correlation at 2 μm out of phase and a negative correlation in phase. Thapsigargin-induced Ca2+ waves were analyzed to determine if the negative flux was due to Ca2+ uptake via thapsigargin-sensitive Ca2+ pumps. Negative flux sites were still found under these conditions, suggesting that multiple mechanisms of Ca2+ removal from the cytosol may contribute to negative flux sites. This method of calculation of flux may serve as a means to describe the distribution of functional ion channels and pumps participating in cellular Ca2+ signalling.  相似文献   

7.
We describe the construction of a simplified, inexpensive lattice light-sheet microscope, and illustrate its use for imaging subcellular Ca2+ puffs evoked by photoreleased i-IP3 in cultured SH-SY5Y neuroblastoma cells loaded with the Ca2+ probe Cal520. The microscope provides sub-micron spatial resolution and enables recording of local Ca2+ transients in single-slice mode with a signal-to-noise ratio and temporal resolution (2 ms) at least as good as confocal or total internal reflection microscopy. Signals arising from openings of individual IP3R channels are clearly resolved, as are stepwise changes in fluorescence reflecting openings and closings of individual channels during puffs. Moreover, by stepping the specimen through the light-sheet, the entire volume of a cell can be scanned within a few hundred ms. The ability to directly visualize a sideways (axial) section through cells directly reveals that IP3-evoked Ca2+ puffs originate at sites in very close (≤a few hundred nm) to the plasma membrane, suggesting they play a specific role in signaling to the membrane.  相似文献   

8.
9.
Ca2+ alternans (Ca-Alts) are alternating beat-to-beat changes in the amplitude of Ca2+ transients that frequently occur during tachycardia, ischemia, or hypothermia that can lead to sudden cardiac death. Ca-Alts appear to result from a variation in the amount of Ca2+ released from the sarcoplasmic reticulum (SR) between two consecutive heartbeats. This variable Ca2+ release has been attributed to the alternation of the action potential duration, delay in the recovery from inactivation of RYR Ca2+ release channel (RYR2), or an incomplete Ca2+ refilling of the SR. In all three cases, the RYR2 mobilizes less Ca2+ from the SR in an alternating manner, thereby generating an alternating profile of the Ca2+ transients. We used a new experimental approach, fluorescence local field optical mapping (FLOM), to record at the epicardial layer of an intact heart with subcellular resolution. In conjunction with a local cold finger, a series of images were recorded within an area where the local cooling induced a temperature gradient. Ca-Alts were larger in colder regions and occurred without changes in action potential duration. Analysis of the change in the enthalpy and Q10 of several kinetic processes defining intracellular Ca2+ dynamics indicated that the effects of temperature change on the relaxation of intracellular Ca2+ transients involved both passive and active mechanisms. The steep temperature dependency of Ca-Alts during tachycardia suggests Ca-Alts are generated by insufficient SERCA-mediated Ca2+ uptake into the SR. We found that Ca-Alts are heavily dependent on intra-SR Ca2+ and can be promoted through partial pharmacologic inhibition of SERCA2a. Finally, the FLOM experimental approach has the potential to help us understand how arrhythmogenesis correlates with the spatial distribution of metabolically impaired myocytes along the myocardium.  相似文献   

10.
The elementary Ca2+-release events underlying voltage-activated myoplasmic Ca2+ transients in mammalian muscle remain elusive. Here, we looked for such events in confocal line-scan (x,t) images of fluo-3 fluorescence taken from isolated adult mouse skeletal muscle fibers held under voltage-clamp conditions. In response to step depolarizations, spatially segregated fluorescence signals could be detected that were riding on a global increase in fluorescence. These discrete signals were separated using digital filtering in the spatial domain; mean values for their spatial half-width and amplitude were 1.99 ± 0.09 μm and 0.16 ± 0.005 ΔF/F 0 (n = 151), respectively. Under control conditions, the duration of the events was limited by the pulse duration. In contrast, in the presence of maurocalcine, a scorpion toxin suspected to disrupt the process of repolarization-induced ryanodine receptor (RyR) closure, events uninterrupted by the end of the pulse were readily detected. Overall results establish these voltage-activated low-amplitude local Ca2+ signals as inherent components of the physiological Ca2+-release process of mammalian muscle and suggest that they result from the opening of either one RyR or a coherently operating group of RyRs, under the control of the plasma membrane polarization.  相似文献   

11.
12.
Previous studies have used analysis of Ca2+ sparks extensively to investigate both normal and pathological Ca2+ regulation in cardiac myocytes. The great majority of these studies used line-scan confocal imaging. In part, this is because the development of open-source software for automatic detection of Ca2+ sparks in line-scan images has greatly simplified data analysis. A disadvantage of line-scan imaging is that data are collected from a single row of pixels, representing only a small fraction of the cell, and in many instances x-y confocal imaging is preferable. However, the limited availability of software for Ca2+ spark analysis in two-dimensional x-y image stacks presents an obstacle to its wider application. This study describes the development and characterization of software to enable automatic detection and analysis of Ca2+ sparks within x-y image stacks, implemented as a plugin within the open-source image analysis platform ImageJ. The program includes methods to enable precise identification of cells within confocal fluorescence images, compensation for changes in background fluorescence, and options that allow exclusion of events based on spatial characteristics.  相似文献   

13.
Previous studies have used analysis of Ca2+ sparks extensively to investigate both normal and pathological Ca2+ regulation in cardiac myocytes. The great majority of these studies used line-scan confocal imaging. In part, this is because the development of open-source software for automatic detection of Ca2+ sparks in line-scan images has greatly simplified data analysis. A disadvantage of line-scan imaging is that data are collected from a single row of pixels, representing only a small fraction of the cell, and in many instances x-y confocal imaging is preferable. However, the limited availability of software for Ca2+ spark analysis in two-dimensional x-y image stacks presents an obstacle to its wider application. This study describes the development and characterization of software to enable automatic detection and analysis of Ca2+ sparks within x-y image stacks, implemented as a plugin within the open-source image analysis platform ImageJ. The program includes methods to enable precise identification of cells within confocal fluorescence images, compensation for changes in background fluorescence, and options that allow exclusion of events based on spatial characteristics.  相似文献   

14.
Combining Voltage and Calcium Imaging from Neuronal Dendrites   总被引:2,自引:0,他引:2  
The ability to monitor membrane potential (V m) and calcium (Ca2+) transients at multiple locations on the same neuron can facilitate further progress in our understanding of neuronal function. Here we describe a method to combine V m and Ca2+ imaging using styryl voltage sensitive dyes and Fura type UV-excitable Ca2+ indicators. In all cases V m optical signals are linear with membrane potential changes, but the calibration of optical signals on an absolute scale is presently possible only in some neurons. The interpretation of Ca2+ optical signals depends on the indicator Ca2+ buffering capacity relative to the cell endogenous buffering capacity. In hippocampal CA1 pyramidal neurons, loaded with JPW-3028 and 300 μM Bis-Fura-2, V m optical signals cannot be calibrated and the physiological Ca2+ dynamics are compromised by the presence of the indicator. Nevertheless, at each individual site, relative changes in V m and Ca2+ fluorescence signals under different conditions can provide meaningful new information on local dendritic integration. In cerebellar Purkinje neurons, loaded with JPW-1114 and 1 mM Fura-FF, V m optical signals can be calibrated in terms of mV and Ca2+ optical signals quantitatively reveal the physiological changes in free Ca2+. Using these two examples, the method is explained in detail.  相似文献   

15.
Regulation of critical cellular functions, including Ca2+-dependent gene expression, is determined by the temporal and spatial aspects of agonist-induced Ca2+ signals. Stimulation of cells with physiological concentrations of agonists trigger increases [Ca2+]i due to intracellular Ca2+ release and Ca2+ influx. While Orai1-STIM1 channels account for agonist-stimulated [Ca2+]i increase as well as activation of NFAT in cells such as lymphocytes, RBL and mast cells, both Orai1-STIM1 and TRPC1-STIM1 channels contribute to [Ca2+]i increases in human submandibular gland (HSG) cells. However, only Orai1-mediated Ca2+ entry regulates the activation of NFAT in HSG cells. Since both TRPC1 and Orai1 are activated following internal Ca2+ store depletion in these cells, it is not clear how the cells decode individual Ca2+ signals generated by the two channels for the regulation of specific cellular functions. Here we have examined the contributions of Orai1 and TRPC1 to carbachol (CCh)-induced [Ca2+]i signals and activation of NFAT in single cells. We report that Orai1-mediated Ca2+ entry generates [Ca2+]i oscillations at different [CCh], ranging from very low to high. In contrast, TRPC1-mediated Ca2+ entry generates sustained [Ca2+]i elevation at high [CCh] and contributes to frequency of [Ca2+]i oscillations at lower [agonist]. More importantly, the two channels are coupled to activation of distinct Ca2+ dependent gene expression pathways, consistent with the different patterns of [Ca2+]i signals mediated by them. Nuclear translocation of NFAT and NFAT-dependent gene expression display “all-or-none” activation that is exclusively driven by local [Ca2+]i generated by Orai1, independent of global [Ca2+]i changes or TRPC1-mediated Ca2+ entry. In contrast, Ca2+ entry via TRPC1 primarily regulates NFκB-mediated gene expression. Together, these findings reveal that Orai1 and TRPC1 mediate distinct local and global Ca2+ signals following agonist stimulation of cells, which determine the functional specificity of the channels in activating different Ca2+-dependent gene expression pathways.  相似文献   

16.
Analysis of Ca2+ signals obtained in various cell types (i.e., cardiomyocytes) is always a tradeoff between acquisition speed and signal/noise ratio of the fluorescence signal. This becomes especially apparent during fast two- or three-dimensional confocal imaging when local intracellular fluorescence signals originating from Ca2+ release from intracellular Ca2+ stores (e.g., sarcoplasmic reticulum) need to be examined. Mathematical methods have been developed to remedy a high noise level by fitting each pixel with a transient function to “denoise” the image. So far, current available analytical approaches have been impaired by a number of constraints (e.g., inability to fit local, concurrent, and consecutive events) and the limited ability to customize implementation. Here, we suggest a, to our knowledge, novel approach for detailed analysis of subcellular micro-Ca2+ events based on pixel-by-pixel denoising of confocal frame- and line-scan images. The algorithm enables spatiotemporally overlapping events (e.g., a Ca2+ spark occurring during the decaying phase of a Ca2+ wave) to be extracted so that various types of Ca2+ events can be detected at a pixel time level of precision. The method allows a nonconstant baseline to be estimated for each pixel, foregoing the need to subtract fluorescence background or apply self-ratio methods before image analysis. Furthermore, by using a clustering algorithm, identified single-pixel events are grouped into “physiologically relevant” Ca2+ signaling events spanning multiple pixels (sparks, waves, puffs, transients, etc.), from which spatiotemporal event parameters (e.g., full duration at half maximal amplitude, full width at half maximal amplitude, amplitude, wave speed, rise, and decay times) can be easily extracted. The method was implemented with cross-platform open source software, providing a comprehensive and easy-to-use graphical user interface enabling rapid line-scan images and rapid frame-scan image sequences (up to 150 frames/s) to be analyzed and repetitive Ca2+ events (Ca2+ sparks and Ca2+ puffs) originating from clusters of Ca2+ release channels located in the sarcoplasmic reticulum membrane (ryanodine receptors and inositol 1,4,5-trisphosphate receptors) of isolated cardiomyocytes to be examined with a high level of precision.  相似文献   

17.
Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 μM; F/F0≈5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes.  相似文献   

18.
Puffs are localized, transient elevations in cytosolic Ca2+ that serve both as the building blocks of global cellular Ca2+ signals and as local signals in their own right. They arise from clustered inositol 1,4,5-trisphosphate receptor/channels (IP3Rs), whose openings are coordinated by Ca2+-induced Ca2+ release (CICR). We utilized total internal reflection fluorescence imaging of Ca2+ signals in neuroblastoma cells with single-channel resolution to elucidate the mechanisms determining the triggering, amplitudes, kinetics, and spatial spread of puffs. We find that any given channel in a cluster has a mean probability of ∼66% of opening following opening of an initial “trigger” channel, and the probability of puff triggering thus increases steeply with increasing number of channels in a cluster (cluster size). Mean puff amplitudes scale with cluster size, but individual amplitudes vary widely, even at sites of similar cluster size, displaying similar proportions of events involving any given number of the channels in the cluster. Stochastic variation in numbers of Ca2+-inhibited IP3Rs likely contributes to the variability of amplitudes of repeated puffs at a site but the amplitudes of successive puffs were uncorrelated, even though we observed statistical correlations between interpuff intervals and puff amplitudes. Initial puffs evoked following photorelease of IP3—which would not be subject to earlier Ca2+-inhibition—also showed wide variability, indicating that mechanisms such as stochastic variation in IP3 binding and channel recruitment by CICR further determine puff amplitudes. The mean termination time of puffs lengthened with increasing puff amplitude size, consistent with independent closings of channels after a given mean open time, but we found no correlation of termination time with cluster size independent of puff amplitude. The spatial extent of puffs increased with their amplitude, and puffs of similar size were of similar width, independent of cluster size.  相似文献   

19.
Puffs are localized, transient elevations in cytosolic Ca2+ that serve both as the building blocks of global cellular Ca2+ signals and as local signals in their own right. They arise from clustered inositol 1,4,5-trisphosphate receptor/channels (IP3Rs), whose openings are coordinated by Ca2+-induced Ca2+ release (CICR). We utilized total internal reflection fluorescence imaging of Ca2+ signals in neuroblastoma cells with single-channel resolution to elucidate the mechanisms determining the triggering, amplitudes, kinetics, and spatial spread of puffs. We find that any given channel in a cluster has a mean probability of ∼66% of opening following opening of an initial “trigger” channel, and the probability of puff triggering thus increases steeply with increasing number of channels in a cluster (cluster size). Mean puff amplitudes scale with cluster size, but individual amplitudes vary widely, even at sites of similar cluster size, displaying similar proportions of events involving any given number of the channels in the cluster. Stochastic variation in numbers of Ca2+-inhibited IP3Rs likely contributes to the variability of amplitudes of repeated puffs at a site but the amplitudes of successive puffs were uncorrelated, even though we observed statistical correlations between interpuff intervals and puff amplitudes. Initial puffs evoked following photorelease of IP3—which would not be subject to earlier Ca2+-inhibition—also showed wide variability, indicating that mechanisms such as stochastic variation in IP3 binding and channel recruitment by CICR further determine puff amplitudes. The mean termination time of puffs lengthened with increasing puff amplitude size, consistent with independent closings of channels after a given mean open time, but we found no correlation of termination time with cluster size independent of puff amplitude. The spatial extent of puffs increased with their amplitude, and puffs of similar size were of similar width, independent of cluster size.  相似文献   

20.
The role of vascular gap junctions in the conduction of intercellular Ca2+ and vasoconstriction along small resistance arteries is not entirely understood. Some depolarizing agents trigger conducted vasoconstriction while others only evoke a local depolarization. Here we use a novel technique to investigate the temporal and spatial relationship between intercellular Ca2+ signals generated by smooth muscle action potentials (APs) and vasoconstriction in mesenteric resistance arteries (MA). Pulses of exogenous KCl to depolarize the downstream end (T1) of a 3 mm long artery increased intracellular Ca2+ associated with vasoconstriction. The spatial spread and amplitude of both depended on the duration of the pulse, with only a restricted non-conducting vasoconstriction to a 1 s pulse. While blocking smooth muscle cell (SMC) K+ channels with TEA and activating L-type voltage-gated Ca2+ channels (VGCCs) with BayK 8644 spread was dramatically facilitated, so the 1 s pulse evoked intercellular Ca2+ waves and vasoconstriction that spread along an entire artery segment 3000 μm long. Ca2+ waves spread as nifedipine-sensitive Ca2+ spikes due to SMC action potentials, and evoked vasoconstriction. Both intercellular Ca2+ and vasoconstriction spread at circa 3 mm s−1 and were independent of the endothelium. The spread but not the generation of Ca2+ spikes was reversibly blocked by the gap junction inhibitor 18β-GA. Thus, smooth muscle gap junctions enable depolarization to spread along resistance arteries, and once regenerative Ca2+-based APs occur, spread along the entire length of an artery followed by widespread vasoconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号